|
|
|
|
|
|
|
|
|
"""Tokenization classes for xgen.""" |
|
|
|
from typing import List, Optional |
|
|
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from transformers.utils import logging |
|
|
|
try: |
|
import tiktoken |
|
except ModuleNotFoundError as e: |
|
raise ModuleNotFoundError("XGen requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
MAX_MODEL_INPUT_SIZES = { |
|
"Salesforce/xgen-7b-4k-base": 4096, |
|
"Salesforce/xgen-7b-8k-base": 8192, |
|
"Salesforce/xgen-7b-4k-inst": 4096, |
|
"Salesforce/xgen-7b-8k-inst": 8192 |
|
} |
|
|
|
|
|
def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True): |
|
if not add_special: |
|
return tiktoken.get_encoding(base) |
|
|
|
def include_whitespace(n_min=2, n_max=20): |
|
whitespaces = [" " * n for n in reversed(range(n_min, n_max))] |
|
return whitespaces |
|
|
|
def include_tabs(n_min=2, n_max=20): |
|
tabs = ["\t" * n for n in reversed(range(n_min, n_max))] |
|
return tabs |
|
|
|
def include_fim_tokens(): |
|
fim_tokens = [ |
|
"<fim_prefix>", |
|
"<fim_middle>", |
|
"<fim_suffix>", |
|
"<fim_pad>", |
|
"<filename>", |
|
"<gh_stars>", |
|
"<issue_start>", |
|
"<issue_comment>", |
|
"<issue_closed>", |
|
"<jupyter_start>", |
|
"<jupyter_text>", |
|
"<jupyter_code>", |
|
"<jupyter_output>", |
|
"<empty_output>", |
|
"<commit_before>", |
|
"<commit_msg>", |
|
"<commit_after>", |
|
"<reponame>" |
|
] |
|
return fim_tokens |
|
|
|
def include_codegen2_tokens(): |
|
tokens = [] |
|
tokens += [f"<dummy_{i}>" for i in range(4)] |
|
tokens.append("<sep>") |
|
tokens.append("<eom>") |
|
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))] |
|
return tokens |
|
|
|
add_whitespaces = include_whitespace(n_min=2, n_max=32) |
|
add_tabs = include_tabs(n_min=2, n_max=10) |
|
fim_tokens = include_fim_tokens() |
|
codegen2_tokens = include_codegen2_tokens() |
|
|
|
tokenizer = tiktoken.get_encoding(base) |
|
|
|
idx = tokenizer.n_vocab |
|
|
|
bpe_ranks = tokenizer._mergeable_ranks |
|
|
|
for wsp in add_whitespaces: |
|
bpe_ranks[bytes(wsp, 'ascii')] = idx |
|
idx += 1 |
|
for t in add_tabs: |
|
bpe_ranks[bytes(t, 'ascii')] = idx |
|
idx += 1 |
|
|
|
special_tokens = dict() |
|
|
|
for sp in fim_tokens: |
|
special_tokens[sp] = idx |
|
idx += 1 |
|
for sp in codegen2_tokens: |
|
special_tokens[sp] = idx |
|
idx += 1 |
|
|
|
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens: |
|
special_tokens[pad_token] = idx |
|
idx += 1 |
|
|
|
|
|
enc = tiktoken.Encoding( |
|
|
|
|
|
name=base.replace("base", "im"), |
|
pat_str=tokenizer._pat_str, |
|
mergeable_ranks=bpe_ranks, |
|
special_tokens={ |
|
**tokenizer._special_tokens, |
|
**special_tokens |
|
} |
|
) |
|
return enc |
|
|
|
|
|
class XgenTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a Xgen tokenizer. Based on byte-level Byte-Pair-Encoding. |
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
""" |
|
max_model_input_sizes = MAX_MODEL_INPUT_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
pad_token=None, |
|
eos_token="<|endoftext|>", |
|
add_eos_token=False, |
|
add_special_tokens=True, |
|
**kwargs, |
|
): |
|
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token |
|
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token |
|
super().__init__( |
|
pad_token=pad_token_added, |
|
eos_token=eos_token_added, |
|
add_eos_token=add_eos_token, |
|
add_special_tokens=add_special_tokens, |
|
**kwargs, |
|
) |
|
self.add_eos_token = add_eos_token |
|
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens) |
|
|
|
@property |
|
def vocab_size(self): |
|
"""Returns vocab size""" |
|
return self.encoder.n_vocab |
|
|
|
def get_vocab(self): |
|
"""Returns vocab as a dict""" |
|
vocab = {self.encoder.decode_single_token_bytes(i): i for i in range(self.vocab_size)} |
|
return vocab |
|
|
|
def _tokenize(self, text, **kwargs): |
|
"""Returns a tokenized string.""" |
|
return self.encoder.encode(text, allowed_special="all") |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
if isinstance(token, str): |
|
return self.encoder.encode_single_token(token) |
|
else: |
|
return token |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.encoder.decode_single_token_bytes(index).decode("utf-8") |
|
|
|
def _decode(self, token_ids: List[int], skip_special_tokens: bool = False, **kwargs): |
|
if skip_special_tokens: |
|
token_ids = [t for t in token_ids if t not in self.all_special_ids] |
|
return self.encoder.decode(token_ids) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: |
|
"""Build model inputs from a sequence by appending eos_token_id.""" |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = token_ids_0 + eos_token_id |
|
|
|
if token_ids_1 is not None: |
|
output = output + token_ids_1 + eos_token_id |
|
|
|
return output |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, |
|
already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether the token list is already formatted with special tokens for the model. |
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
eos_token_id = [1] if self.add_eos_token else [] |
|
|
|
if token_ids_1 is None: |
|
return ([0] * len(token_ids_0)) + eos_token_id |
|
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT |
|
sequence pair mask has the following format: |
|
``` |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
``` |
|
if token_ids_1 is None, only returns the first portion of the mask (0s). |
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of ids. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). |
|
""" |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = [0] * len(token_ids_0 + eos_token_id) |
|
|
|
if token_ids_1 is not None: |
|
output += [1] * len(token_ids_1 + eos_token_id) |
|
|
|
return output |
|
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None): |
|
return () |
|
|