File size: 2,860 Bytes
70b1103 04d6513 b2d79c4 04d6513 d61d475 04d6513 f763572 26b0c19 b8cb7a8 26b0c19 04d6513 f449f50 22824f5 04d6513 22824f5 b2d79c4 f449f50 04d6513 8f0af50 04d6513 8f0af50 04d6513 f763572 d61d475 04d6513 d61d475 04d6513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: apache-2.0
---
# XGen-7B-8K-Base
Official research release for the family of **XGen** models (`7B`) by Salesforce AI Research:
*Title*: [Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length](https://arxiv.org/abs/2309.03450)
*Authors*: [Erik Nijkamp](https://eriknijkamp.com)\*, Tian Xie\*, [Hiroaki Hayashi](https://hiroakih.me/)\*, [Bo Pang](https://scholar.google.com/citations?user=s9fNEVEAAAAJ&hl=en)\*, Congying Xia\*, Chen Xing, Jesse Vig, Semih Yavuz, Philippe Laban, Ben Krause, Senthil Purushwalkam, Tong Niu, Wojciech Kryscinski, Lidiya Murakhovs'ka, Prafulla Kumar Choubey, Alex Fabbri, Ye Liu, Rui Meng, Lifu Tu, Meghana Bhat, [Chien-Sheng Wu](https://jasonwu0731.github.io/), Silvio Savarese, [Yingbo Zhou](https://scholar.google.com/citations?user=H_6RQ7oAAAAJ&hl=en), [Shafiq Rayhan Joty](https://raihanjoty.github.io/), [Caiming Xiong](http://cmxiong.com/).
(* indicates equal contribution)
Correspondence to: [Shafiq Rayhan Joty](mailto:[email protected]), [Caiming Xiong](mailto:[email protected])
## Models
### Base models
* [XGen-7B-4K-Base](https://huggingface.co/Salesforce/xgen-7b-4k-base): XGen-7B model pre-trained under 4K sequence length.
* License: Apache-2.0
* [XGen-7B-8K-Base](https://huggingface.co/Salesforce/xgen-7b-8k-base): XGen-7B model pre-trained under 8K sequence length.
* License: Apache-2.0
### Instruction-finetuned models
Supervised finetuned model on public domain instructional data. Released for ***research purpose*** only.
* [XGen-7B-8K-Inst](https://huggingface.co/Salesforce/xgen-7b-8k-inst)
## How to run
The training data for the models are tokenized with OpenAI Tiktoken library.
To use this model, install the package via `pip`:
```sh
pip install tiktoken
```
The models can be used as auto-regressive samplers as follows:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-base", torch_dtype=torch.bfloat16)
inputs = tokenizer("The world is", return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))
```
## Citation
```bibtex
@misc{XGen,
title={Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length},
author={Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang, Congying Xia, Chen Xing, Jesse Vig, Semih Yavuz, Philippe Laban, Ben Krause, Senthil Purushwalkam, Tong Niu, Wojciech Kryscinski, Lidiya Murakhovs'ka, Prafulla Kumar Choubey, Alex Fabbri, Ye Liu, Rui Meng, Lifu Tu, Meghana Bhat, Chien-Sheng Wu, Silvio Savarese, Yingbo Zhou, Shafiq Rayhan Joty, Caiming Xiong},
howpublished={ArXiv},
year={2023},
url={https://arxiv.org/abs/2309.03450}
}
```
|