File size: 8,054 Bytes
9209ed4
 
 
 
 
31cf2fb
 
9209ed4
 
 
 
 
 
 
 
 
 
 
31cf2fb
9209ed4
9b85988
 
 
 
8de1ac5
9b85988
8de1ac5
9b85988
9209ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84322e8
9209ed4
 
 
 
 
9b85988
9209ed4
 
 
84322e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b85988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9209ed4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
library_name: transformers
license: other
base_model: nvidia/mit-b1
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: segformer-finetuned-tt-2k-b1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-finetuned-tt-2k-b1

This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the Saumya-Mundra/text255 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0912
- Mean Iou: 0.4902
- Mean Accuracy: 0.9805
- Overall Accuracy: 0.9805
- Accuracy Text: nan
- Accuracy No Text: 0.9805
- Iou Text: 0.0
- Iou No Text: 0.9805

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- training_steps: 5000

### Training results

| Training Loss | Epoch | Step | Accuracy No Text | Accuracy Text | Iou No Text | Iou Text | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
|:-------------:|:-----:|:----:|:----------------:|:-------------:|:-----------:|:--------:|:---------------:|:-------------:|:--------:|:----------------:|
| 0.3305        | 1.0   | 125  | 0.9586           | nan           | 0.9586      | 0.0      | 0.1846          | 0.9586        | 0.4793   | 0.9586           |
| 0.2037        | 2.0   | 250  | 0.9706           | nan           | 0.9706      | 0.0      | 0.1322          | 0.9706        | 0.4853   | 0.9706           |
| 0.1534        | 3.0   | 375  | 0.9784           | nan           | 0.9784      | 0.0      | 0.1074          | 0.9784        | 0.4892   | 0.9784           |
| 0.1313        | 4.0   | 500  | 0.9839           | nan           | 0.9839      | 0.0      | 0.0976          | 0.9839        | 0.4920   | 0.9839           |
| 0.1156        | 5.0   | 625  | 0.9799           | nan           | 0.9799      | 0.0      | 0.1001          | 0.9799        | 0.4900   | 0.9799           |
| 0.1123        | 6.0   | 750  | 0.9866           | nan           | 0.9866      | 0.0      | 0.0920          | 0.9866        | 0.4933   | 0.9866           |
| 0.108         | 7.0   | 875  | 0.9815           | nan           | 0.9815      | 0.0      | 0.0946          | 0.9815        | 0.4908   | 0.9815           |
| 0.1017        | 8.0   | 1000 | 0.9805           | nan           | 0.9805      | 0.0      | 0.0943          | 0.9805        | 0.4903   | 0.9805           |
| 0.0994        | 9.0   | 1125 | 0.9808           | nan           | 0.9808      | 0.0      | 0.0927          | 0.9808        | 0.4904   | 0.9808           |
| 0.0926        | 10.0  | 1250 | 0.9783           | nan           | 0.9783      | 0.0      | 0.0957          | 0.9783        | 0.4891   | 0.9783           |
| 0.0907        | 11.0  | 1375 | 0.9830           | nan           | 0.9830      | 0.0      | 0.0913          | 0.9830        | 0.4915   | 0.9830           |
| 0.0893        | 12.0  | 1500 | 0.9838           | nan           | 0.9838      | 0.0      | 0.0893          | 0.9838        | 0.4919   | 0.9838           |
| 0.0853        | 13.0  | 1625 | 0.9804           | nan           | 0.9804      | 0.0      | 0.0913          | 0.9804        | 0.4902   | 0.9804           |
| 0.0834        | 14.0  | 1750 | 0.9820           | nan           | 0.9820      | 0.0      | 0.0899          | 0.9820        | 0.4910   | 0.9820           |
| 0.0861        | 15.0  | 1875 | 0.9815           | nan           | 0.9815      | 0.0      | 0.0902          | 0.9815        | 0.4907   | 0.9815           |
| 0.0803        | 16.0  | 2000 | 0.9793           | nan           | 0.9793      | 0.0      | 0.0929          | 0.9793        | 0.4897   | 0.9793           |
| 0.0884        | 17.0  | 2125 | 0.1001           | 0.4875        | 0.9751      | 0.9751   | nan             | 0.9751        | 0.0      | 0.9751           |
| 0.0871        | 18.0  | 2250 | 0.0907           | 0.4892        | 0.9783      | 0.9783   | nan             | 0.9783        | 0.0      | 0.9783           |
| 0.0854        | 19.0  | 2375 | 0.0893           | 0.4924        | 0.9849      | 0.9849   | nan             | 0.9849        | 0.0      | 0.9849           |
| 0.0852        | 20.0  | 2500 | 0.0870           | 0.4915        | 0.9831      | 0.9831   | nan             | 0.9831        | 0.0      | 0.9831           |
| 0.0858        | 21.0  | 2625 | 0.0925           | 0.4896        | 0.9792      | 0.9792   | nan             | 0.9792        | 0.0      | 0.9792           |
| 0.0804        | 22.0  | 2750 | 0.0964           | 0.4887        | 0.9774      | 0.9774   | nan             | 0.9774        | 0.0      | 0.9774           |
| 0.076         | 23.0  | 2875 | 0.0934           | 0.4893        | 0.9786      | 0.9786   | nan             | 0.9786        | 0.0      | 0.9786           |
| 0.0753        | 24.0  | 3000 | 0.0906           | 0.4890        | 0.9781      | 0.9781   | nan             | 0.9781        | 0.0      | 0.9781           |
| 0.0742        | 25.0  | 3125 | 0.0962           | 0.4900        | 0.9801      | 0.9801   | nan             | 0.9801        | 0.0      | 0.9801           |
| 0.0724        | 26.0  | 3250 | 0.0892           | 0.4920        | 0.9840      | 0.9840   | nan             | 0.9840        | 0.0      | 0.9840           |
| 0.0794        | 27.0  | 3375 | 0.0885           | 0.4902        | 0.9803      | 0.9803   | nan             | 0.9803        | 0.0      | 0.9803           |
| 0.0685        | 28.0  | 3500 | 0.0932           | 0.4911        | 0.9821      | 0.9821   | nan             | 0.9821        | 0.0      | 0.9821           |
| 0.0695        | 29.0  | 3625 | 0.0890           | 0.4906        | 0.9812      | 0.9812   | nan             | 0.9812        | 0.0      | 0.9812           |
| 0.065         | 30.0  | 3750 | 0.0877           | 0.4904        | 0.9808      | 0.9808   | nan             | 0.9808        | 0.0      | 0.9808           |
| 0.0699        | 31.0  | 3875 | 0.0947           | 0.4877        | 0.9754      | 0.9754   | nan             | 0.9754        | 0.0      | 0.9754           |
| 0.0742        | 32.0  | 4000 | 0.0875           | 0.4902        | 0.9805      | 0.9805   | nan             | 0.9805        | 0.0      | 0.9805           |
| 0.0646        | 33.0  | 4125 | 0.0895           | 0.4903        | 0.9805      | 0.9805   | nan             | 0.9805        | 0.0      | 0.9805           |
| 0.0677        | 34.0  | 4250 | 0.0915           | 0.4909        | 0.9818      | 0.9818   | nan             | 0.9818        | 0.0      | 0.9818           |
| 0.0666        | 35.0  | 4375 | 0.0932           | 0.4890        | 0.9781      | 0.9781   | nan             | 0.9781        | 0.0      | 0.9781           |
| 0.062         | 36.0  | 4500 | 0.0893           | 0.4901        | 0.9803      | 0.9803   | nan             | 0.9803        | 0.0      | 0.9803           |
| 0.0623        | 37.0  | 4625 | 0.0934           | 0.4895        | 0.9789      | 0.9789   | nan             | 0.9789        | 0.0      | 0.9789           |
| 0.0658        | 38.0  | 4750 | 0.0907           | 0.4913        | 0.9826      | 0.9826   | nan             | 0.9826        | 0.0      | 0.9826           |
| 0.0596        | 39.0  | 4875 | 0.0904           | 0.4915        | 0.9831      | 0.9831   | nan             | 0.9831        | 0.0      | 0.9831           |
| 0.0628        | 40.0  | 5000 | 0.0912           | 0.4902        | 0.9805      | 0.9805   | nan             | 0.9805        | 0.0      | 0.9805           |


### Framework versions

- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0