Saxo commited on
Commit
ae1266f
·
verified ·
1 Parent(s): 7c1a9ed

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md CHANGED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: NousResearch/Hermes-3-Llama-3.1-70B
5
+ datasets:
6
+ - Saxo/ko_cn_translation_tech_social_science_linkbricks_single_dataset
7
+ - Saxo/ko_jp_translation_tech_social_science_linkbricks_single_dataset
8
+ - Saxo/en_ko_translation_tech_science_linkbricks_single_dataset_with_prompt_text_huggingface
9
+ - Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface
10
+ - Saxo/ko_aspect_sentiment_sns_mall_sentiment_linkbricks_single_dataset_with_prompt_text_huggingface
11
+ - Saxo/ko_summarization_linkbricks_single_dataset_with_prompt_text_huggingface
12
+ - Saxo/OpenOrca_cleaned_kor_linkbricks_single_dataset_with_prompt_text_huggingface
13
+ - Saxo/ko_government_qa_total_linkbricks_single_dataset_with_prompt_text_huggingface_sampled
14
+ - Saxo/ko-news-corpus-1
15
+ - Saxo/ko-news-corpus-2
16
+ - Saxo/ko-news-corpus-3
17
+ - Saxo/ko-news-corpus-4
18
+ - Saxo/ko-news-corpus-5
19
+ - Saxo/ko-news-corpus-6
20
+ - Saxo/ko-news-corpus-7
21
+ - Saxo/ko-news-corpus-8
22
+ - Saxo/ko-news-corpus-9
23
+ - maywell/ko_Ultrafeedback_binarized
24
+ - youjunhyeok/ko-orca-pair-and-ultrafeedback-dpo
25
+ - lilacai/glaive-function-calling-v2-sharegpt
26
+ - kuotient/gsm8k-ko
27
+ language:
28
+ - ko
29
+ - en
30
+ - jp
31
+ - cn
32
+ pipeline_tag: text-generation
33
+ ---
34
+
35
+ # Model Card for Model ID
36
+
37
+ <div align="center">
38
+ <img src="http://www.linkbricks.com/wp-content/uploads/2024/11/fulllogo.png" />
39
+ </div>
40
+
41
+
42
+ AI 와 빅데이터 분석 전문 기업인 Linkbricks의 데이터사이언티스트인 지윤성(Saxo) 이사가 <br>
43
+ Hermes-3-Llama-3.1-70B 베이스모델을 사용해서 H100-80G 8개를 통해 약 20%정도의 파라미터를 일본어 CPT(Continued-Pretraining)->SFT->DPO 한 일본어 강화 언어 모델<br>
44
+ 2천만건의 일본 뉴스 및 위키 코퍼스를 기준으로 다양한 테스크별 일본어-한국어-중국어-영어 교차 학습 데이터와 수학 및 논리판단 데이터를 통하여 한중일영 언어 교차 증강 처리와 복잡한 논리 문제 역시 대응 가능하도록 훈련한 모델이다.<br>
45
+ -토크나이저는 단어 확장 없이 베이스 모델 그대로 사용<br>
46
+ -고객 리뷰나 소셜 포스팅 고차원 분석 및 코딩과 작문, 수학, 논리판단 등이 강화된 모델<br>
47
+ -128k-Context Window<br>
48
+ -한글 Function Call 및 Tool Calling 지원<br>
49
+ -Deepspeed Stage=3, rslora 및 BAdam Layer Mode 사용 <br>
50
+ <br><br>
51
+
52
+ Finetuned by Mr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics <br>
53
+ about 20% of total parameters Japanese CPT(Continued-Pretraining)->SFT->DPO training model based on Hermes-3-Llama-3.1-70B through 8 H100-80Gs as a Japanese boosting language model <br>
54
+ It is a model that has been trained to handle Japanese-Korean-Chinese-English cross-training data and 10M korean news corpus and logic judgment data for various tasks to enable cross-fertilization processing and complex Korean logic & math problems. <br>
55
+ -Tokenizer uses the base model without word expansion<br>
56
+ -Models enhanced with high-dimensional analysis of customer reviews and social posts, as well as coding, writing, math and decision making<br>
57
+ -128k-Context Window<br>
58
+ -Deepspeed Stage=3, use rslora and BAdam Layer Mode<br>
59
+ <br><br>
60
+
61
+ <a href="www.linkbricks.com">www.linkbricks.com</a>, <a href="www.linkbricks.vc">www.linkbricks.vc</a>