Dekel Cohen commited on
Commit
6ee01a0
·
1 Parent(s): 9670789
Files changed (6) hide show
  1. .gitattributes +0 -1
  2. README.md +133 -0
  3. config.json +3 -0
  4. example-fa.wav +0 -0
  5. hyperparams.yaml +77 -0
  6. model.ckpt +3 -0
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - fa
4
+ thumbnail: null
5
+ pipeline_tag: automatic-speech-recognition
6
+ tags:
7
+ - whisper
8
+ - pytorch
9
+ - speechbrain
10
+ - Transformer
11
+ - hf-asr-leaderboard
12
+ license: apache-2.0
13
+ datasets:
14
+ - commonvoice
15
+ metrics:
16
+ - wer
17
+ - cer
18
+ model-index:
19
+ - name: asr-whisper-large-v2-commonvoice-ar
20
+ results:
21
+ - task:
22
+ name: Automatic Speech Recognition
23
+ type: automatic-speech-recognition
24
+ dataset:
25
+ name: CommonVoice 10.0 (Persian)
26
+ type: mozilla-foundation/common_voice_10_0
27
+ config: fa
28
+ split: test
29
+ args:
30
+ language: fa
31
+ metrics:
32
+ - name: Test WER
33
+ type: wer
34
+ value: '31.75'
35
+ inference: false
36
+ ---
37
+
38
+ <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
39
+ <br/><br/>
40
+
41
+ # whisper large-v2 fine-tuned on CommonVoice Persian
42
+
43
+ This repository provides all the necessary tools to perform automatic speech
44
+ recognition from an end-to-end whisper model fine-tuned on CommonVoice (Persian Language) within
45
+ SpeechBrain. For a better experience, we encourage you to learn more about
46
+ [SpeechBrain](https://speechbrain.github.io).
47
+
48
+ The performance of the model is the following:
49
+
50
+ | Release | Test CER | Test WER | GPUs |
51
+ |:-------------:|:--------------:|:--------------:| :--------:|
52
+ | 01-02-23 | 9.38 | 31.75 | 1xV100 16GB |
53
+
54
+ ## Pipeline description
55
+
56
+ This ASR system is composed of whisper encoder-decoder blocks:
57
+ - The pretrained whisper-large-v2 encoder is frozen.
58
+ - The pretrained Whisper tokenizer is used.
59
+ - A pretrained Whisper-large-v2 decoder ([openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2)) is finetuned on CommonVoice Fa.
60
+ The obtained final acoustic representation is given to the greedy decoder.
61
+
62
+ The system is trained with recordings sampled at 16kHz (single channel).
63
+ The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
64
+
65
+ ## Install SpeechBrain
66
+
67
+ First of all, please install tranformers and SpeechBrain with the following command:
68
+
69
+ ```
70
+ pip install speechbrain transformers==4.28.0
71
+ ```
72
+
73
+ Please notice that we encourage you to read our tutorials and learn more about
74
+ [SpeechBrain](https://speechbrain.github.io).
75
+
76
+ ### Transcribing your own audio files (in Persian)
77
+
78
+ ```python
79
+
80
+ from speechbrain.inference.ASR import WhisperASR
81
+
82
+ asr_model = WhisperASR.from_hparams(source="speechbrain/asr-whisper-large-v2-commonvoice-fa", savedir="pretrained_models/asr-whisper-large-v2-commonvoice-fa")
83
+ asr_model.transcribe_file("speechbrain/asr-whisper-large-v2-commonvoice-fa/example-fa.wav")
84
+
85
+
86
+ ```
87
+ ### Inference on GPU
88
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
89
+
90
+ ### Training
91
+ The model was trained with SpeechBrain.
92
+ To train it from scratch follow these steps:
93
+ 1. Clone SpeechBrain:
94
+ ```bash
95
+ git clone https://github.com/speechbrain/speechbrain/
96
+ ```
97
+ 2. Install it:
98
+ ```bash
99
+ cd speechbrain
100
+ pip install -r requirements.txt
101
+ pip install -e .
102
+ ```
103
+
104
+ 3. Run Training:
105
+ ```bash
106
+ cd recipes/CommonVoice/ASR/transformer/
107
+ python train_with_whisper.py hparams/train_fa_hf_whisper.yaml --data_folder=your_data_folder
108
+ ```
109
+
110
+ You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1nzMMYmB5SxMKsFUk-rM9_ijcqzia8pX7).
111
+
112
+ ### Limitations
113
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
114
+
115
+ #### Referencing SpeechBrain
116
+
117
+ ```
118
+ @misc{SB2021,
119
+ author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
120
+ title = {SpeechBrain},
121
+ year = {2021},
122
+ publisher = {GitHub},
123
+ journal = {GitHub repository},
124
+ howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
125
+ }
126
+ ```
127
+
128
+ #### About SpeechBrain
129
+ SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
130
+
131
+ Website: https://speechbrain.github.io/
132
+
133
+ GitHub: https://github.com/speechbrain/speechbrain
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "speechbrain_interface": "WhisperASR"
3
+ }
example-fa.wav ADDED
Binary file (575 kB). View file
 
hyperparams.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ################################
2
+ # Model: Whisper (Encoder-Decoder) + NLL
3
+ # Augmentation: TimeDomainSpecAugment
4
+ # Authors: Pooneh Mousavi 2022
5
+ # ################################
6
+
7
+
8
+ # URL for the biggest Fairseq english whisper model.
9
+ whisper_hub: openai/whisper-large-v2
10
+
11
+ # Normalize inputs with
12
+ # the same normalization done in the paper. Refer to Appendix C for further information.
13
+ normalized_transcripts: True
14
+
15
+
16
+ language: persian
17
+
18
+ auto_mix_prec: False
19
+ sample_rate: 16000
20
+
21
+ # These values are only used for the searchers.
22
+ # They needs to be hardcoded and should not be changed with Whisper.
23
+ # They are used as part of the searching process.
24
+ # The bos token of the searcher will be timestamp_index
25
+ # and will be concatenated with the bos, language and task tokens.
26
+ timestamp_index: 50363
27
+ eos_index: 50257
28
+ bos_index: 50258
29
+
30
+ # Decoding parameters
31
+ min_decode_ratio: 0.0
32
+ max_decode_ratio: 0.1
33
+ test_beam_size: 8
34
+
35
+ # Model parameters
36
+ freeze_whisper: True
37
+ freeze_encoder: True
38
+
39
+
40
+
41
+ whisper: !new:speechbrain.lobes.models.huggingface_transformers.whisper.Whisper
42
+ source: !ref <whisper_hub>
43
+ freeze: !ref <freeze_whisper>
44
+ freeze_encoder: !ref <freeze_encoder>
45
+ save_path: whisper_checkpoints
46
+ encoder_only: False
47
+
48
+
49
+
50
+ decoder: !new:speechbrain.decoders.seq2seq.S2SWhisperGreedySearch
51
+ model: !ref <whisper>
52
+ bos_index: !ref <timestamp_index>
53
+ eos_index: !ref <eos_index>
54
+ min_decode_ratio: !ref <min_decode_ratio>
55
+ max_decode_ratio: !ref <max_decode_ratio>
56
+
57
+ # test_beam_searcher: !new:speechbrain.decoders.seq2seq.S2SWhisperBeamSearch
58
+ # module: [!ref <whisper>]
59
+ # bos_index: !ref <timestamp_index>
60
+ # eos_index: !ref <eos_index>
61
+ # min_decode_ratio: !ref <min_decode_ratio>
62
+ # max_decode_ratio: !ref <max_decode_ratio>
63
+ # beam_size: !ref <test_beam_size>
64
+
65
+
66
+
67
+
68
+
69
+ modules:
70
+ whisper: !ref <whisper>
71
+ decoder: !ref <decoder>
72
+
73
+
74
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
75
+ loadables:
76
+ whisper: !ref <whisper>
77
+
model.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:835b3719a018b621939dca0393abc45f1e7e4d50dfc3b29441a1a13e5be9379b
3
+ size 6173767281