Shankhdhar commited on
Commit
de5c2fa
·
verified ·
1 Parent(s): c30fe09

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: How long will it take to deliver the 50 pack of Brown Bakery Boxes to Patna?
13
+ - text: What materials should I look for in a high-quality tea infuser to ensure the
14
+ best brewing experience?
15
+ - text: I need to return an item, what is the return policy for online orders?
16
+ - text: What is the policy for returning sneakers with a damaged box?
17
+ - text: What is the procedure for returning a large quantity of boxes?
18
+ pipeline_tag: text-classification
19
+ inference: true
20
+ model-index:
21
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 0.8266666666666667
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 5 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | product policy | <ul><li>'What is the procedure for returning sneakers purchased with a credit note?'</li><li>'How do I provide proof of purchase or order information when returning a damaged product?'</li><li>'What is the process for exchanging sneakers?'</li></ul> |
67
+ | order tracking | <ul><li>"My order was supposed to arrive yesterday but it hasn't. Can you check the delivery status for me?"</li><li>'What is the delivery status for my order placed using phone number 7654321098?'</li><li>'What is the process for requesting a signature upon delivery for my order?'</li></ul> |
68
+ | general faq | <ul><li>'What are the key factors to consider when developing a personalized diet plan for weight loss?'</li><li>'What are some tips for maximizing the antioxidant content when brewing green tea?'</li><li>'Can you explain why Mashru silk is considered more comfortable to wear compared to pure silk sarees?'</li></ul> |
69
+ | product faq | <ul><li>'What is the fabric used in the Pure Katan silk double Bird Satin Tanchoi Banarasi Saree?'</li><li>'What are the available colors for this Saree?'</li><li>'What is the price of this Saree?'</li></ul> |
70
+ | product discoverability | <ul><li>'Do you have adidas Superstar shoes?'</li><li>'Do you have any bestseller teas available?'</li><li>'What types of spices do you carry?'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Accuracy |
76
+ |:--------|:---------|
77
+ | **all** | 0.8267 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("setfit_model_id")
96
+ # Run inference
97
+ preds = model("What is the policy for returning sneakers with a damaged box?")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:--------|:----|
129
+ | Word count | 4 | 12.2784 | 28 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:------------------------|:----------------------|
133
+ | general faq | 24 |
134
+ | order tracking | 32 |
135
+ | product discoverability | 40 |
136
+ | product faq | 40 |
137
+ | product policy | 40 |
138
+
139
+ ### Training Hyperparameters
140
+ - batch_size: (16, 16)
141
+ - num_epochs: (2, 2)
142
+ - max_steps: -1
143
+ - sampling_strategy: oversampling
144
+ - body_learning_rate: (2e-05, 1e-05)
145
+ - head_learning_rate: 0.01
146
+ - loss: CosineSimilarityLoss
147
+ - distance_metric: cosine_distance
148
+ - margin: 0.25
149
+ - end_to_end: False
150
+ - use_amp: False
151
+ - warmup_proportion: 0.1
152
+ - seed: 42
153
+ - eval_max_steps: -1
154
+ - load_best_model_at_end: True
155
+
156
+ ### Training Results
157
+ | Epoch | Step | Training Loss | Validation Loss |
158
+ |:------:|:----:|:-------------:|:---------------:|
159
+ | 0.0007 | 1 | 0.2756 | - |
160
+ | 0.0326 | 50 | 0.1828 | - |
161
+ | 0.0651 | 100 | 0.1005 | - |
162
+ | 0.0977 | 150 | 0.0536 | - |
163
+ | 0.1302 | 200 | 0.0163 | - |
164
+ | 0.1628 | 250 | 0.0032 | - |
165
+ | 0.1953 | 300 | 0.0016 | - |
166
+ | 0.2279 | 350 | 0.0006 | - |
167
+ | 0.2604 | 400 | 0.0006 | - |
168
+ | 0.2930 | 450 | 0.0006 | - |
169
+ | 0.3255 | 500 | 0.0003 | - |
170
+ | 0.3581 | 550 | 0.0004 | - |
171
+ | 0.3906 | 600 | 0.0012 | - |
172
+ | 0.4232 | 650 | 0.0003 | - |
173
+ | 0.4557 | 700 | 0.0002 | - |
174
+ | 0.4883 | 750 | 0.0002 | - |
175
+ | 0.5208 | 800 | 0.0002 | - |
176
+ | 0.5534 | 850 | 0.0001 | - |
177
+ | 0.5859 | 900 | 0.0002 | - |
178
+ | 0.6185 | 950 | 0.0002 | - |
179
+ | 0.6510 | 1000 | 0.0002 | - |
180
+ | 0.6836 | 1050 | 0.0001 | - |
181
+ | 0.7161 | 1100 | 0.0001 | - |
182
+ | 0.7487 | 1150 | 0.0001 | - |
183
+ | 0.7812 | 1200 | 0.0002 | - |
184
+ | 0.8138 | 1250 | 0.0001 | - |
185
+ | 0.8464 | 1300 | 0.0003 | - |
186
+ | 0.8789 | 1350 | 0.0002 | - |
187
+ | 0.9115 | 1400 | 0.0001 | - |
188
+ | 0.9440 | 1450 | 0.0001 | - |
189
+ | 0.9766 | 1500 | 0.0001 | - |
190
+ | 1.0091 | 1550 | 0.0001 | - |
191
+ | 1.0417 | 1600 | 0.0001 | - |
192
+ | 1.0742 | 1650 | 0.0001 | - |
193
+ | 1.1068 | 1700 | 0.0001 | - |
194
+ | 1.1393 | 1750 | 0.0001 | - |
195
+ | 1.1719 | 1800 | 0.0001 | - |
196
+ | 1.2044 | 1850 | 0.0001 | - |
197
+ | 1.2370 | 1900 | 0.0001 | - |
198
+ | 1.2695 | 1950 | 0.0001 | - |
199
+ | 1.3021 | 2000 | 0.0001 | - |
200
+ | 1.3346 | 2050 | 0.0001 | - |
201
+ | 1.3672 | 2100 | 0.0001 | - |
202
+ | 1.3997 | 2150 | 0.0001 | - |
203
+ | 1.4323 | 2200 | 0.0001 | - |
204
+ | 1.4648 | 2250 | 0.0001 | - |
205
+ | 1.4974 | 2300 | 0.0001 | - |
206
+ | 1.5299 | 2350 | 0.0001 | - |
207
+ | 1.5625 | 2400 | 0.0001 | - |
208
+ | 1.5951 | 2450 | 0.0001 | - |
209
+ | 1.6276 | 2500 | 0.0001 | - |
210
+ | 1.6602 | 2550 | 0.0001 | - |
211
+ | 1.6927 | 2600 | 0.0001 | - |
212
+ | 1.7253 | 2650 | 0.0001 | - |
213
+ | 1.7578 | 2700 | 0.0001 | - |
214
+ | 1.7904 | 2750 | 0.0001 | - |
215
+ | 1.8229 | 2800 | 0.0001 | - |
216
+ | 1.8555 | 2850 | 0.0001 | - |
217
+ | 1.8880 | 2900 | 0.0001 | - |
218
+ | 1.9206 | 2950 | 0.0001 | - |
219
+ | 1.9531 | 3000 | 0.0001 | - |
220
+ | 1.9857 | 3050 | 0.0001 | - |
221
+
222
+ ### Framework Versions
223
+ - Python: 3.9.19
224
+ - SetFit: 1.0.3
225
+ - Sentence Transformers: 2.7.0
226
+ - Transformers: 4.40.2
227
+ - PyTorch: 2.2.2
228
+ - Datasets: 2.19.1
229
+ - Tokenizers: 0.19.1
230
+
231
+ ## Citation
232
+
233
+ ### BibTeX
234
+ ```bibtex
235
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
236
+ doi = {10.48550/ARXIV.2209.11055},
237
+ url = {https://arxiv.org/abs/2209.11055},
238
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
239
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
240
+ title = {Efficient Few-Shot Learning Without Prompts},
241
+ publisher = {arXiv},
242
+ year = {2022},
243
+ copyright = {Creative Commons Attribution 4.0 International}
244
+ }
245
+ ```
246
+
247
+ <!--
248
+ ## Glossary
249
+
250
+ *Clearly define terms in order to be accessible across audiences.*
251
+ -->
252
+
253
+ <!--
254
+ ## Model Card Authors
255
+
256
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
257
+ -->
258
+
259
+ <!--
260
+ ## Model Card Contact
261
+
262
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
263
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "general faq",
5
+ "order tracking",
6
+ "product discoverability",
7
+ "product faq",
8
+ "product policy"
9
+ ]
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7a1db18307e364cf3c01695eb54f32bf59affcd89b06e613d186860a99b7c60
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:796f50030b29efdbd383f3c2422de14f5e93a945934926fd762e1315f588b897
3
+ size 32063
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff