ShauryaNova commited on
Commit
a5fa82e
·
verified ·
1 Parent(s): 9edce93

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - autotrain
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: 'search_query: i love autotrain'
12
+ sentences:
13
+ - 'search_query: huggingface auto train'
14
+ - 'search_query: hugging face auto train'
15
+ - 'search_query: i love autotrain'
16
+ pipeline_tag: sentence-similarity
17
+ ---
18
+
19
+ # Model Trained Using AutoTrain
20
+
21
+ - Problem type: Sentence Transformers
22
+
23
+ ## Validation Metrics
24
+ loss: 0.056603044271469116
25
+
26
+ cosine_accuracy: 1.0
27
+
28
+ dot_accuracy: 0.0
29
+
30
+ manhattan_accuracy: 1.0
31
+
32
+ euclidean_accuracy: 1.0
33
+
34
+ max_accuracy: 1.0
35
+
36
+ runtime: 43.9603
37
+
38
+ samples_per_second: 13.194
39
+
40
+ steps_per_second: 0.842
41
+
42
+ : 3.0
43
+
44
+ ## Usage
45
+
46
+ ### Direct Usage (Sentence Transformers)
47
+
48
+ First install the Sentence Transformers library:
49
+
50
+ ```bash
51
+ pip install -U sentence-transformers
52
+ ```
53
+
54
+ Then you can load this model and run inference.
55
+ ```python
56
+ from sentence_transformers import SentenceTransformer
57
+
58
+ # Download from the Hugging Face Hub
59
+ model = SentenceTransformer("sentence_transformers_model_id")
60
+ # Run inference
61
+ sentences = [
62
+ 'search_query: autotrain',
63
+ 'search_query: auto train',
64
+ 'search_query: i love autotrain',
65
+ ]
66
+ embeddings = model.encode(sentences)
67
+ print(embeddings.shape)
68
+
69
+ # Get the similarity scores for the embeddings
70
+ similarities = model.similarity(embeddings, embeddings)
71
+ print(similarities.shape)
72
+ ```
checkpoint-870/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-870/README.md ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - dot_accuracy
9
+ - manhattan_accuracy
10
+ - euclidean_accuracy
11
+ - max_accuracy
12
+ pipeline_tag: sentence-similarity
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:2320
19
+ - loss:MultipleNegativesRankingLoss
20
+ widget:
21
+ - source_sentence: DENNIE FOSTE Men's Poly Cotton Washed Light Blue Jeans(DF-JNS-015)
22
+ sentences:
23
+ - https://www.amazon.in/dp/B0BZDFGSCR
24
+ - DENNIE FOSTE presents this streachable fabric Polycotton jeans. It's good quality
25
+ fabric would certainly make you feel good and confident when you wear it. Comfortable
26
+ front pockets, comfortable back pockets, highly durable and stretchable jeans
27
+ for man. Perfect for casual, beach parties wear high on style and quality, these
28
+ stretchable jeans are as versatile as they are comfortable. Wear it with a casual
29
+ tee for a smart look. Wear it casually and be at ease throughout the day or it
30
+ can also blend to perfection on your special ocassions.
31
+ - urbano fashion mens slim fit jeans
32
+ - source_sentence: ZESICA Women's 2023 Summer Bohemian Solid Color Lace Trim Flowy
33
+ A Line Beach Long Maxi Skirt with Pockets
34
+ sentences:
35
+ - aratlench acrylic pendant necklace earrings – long statement leaf charm necklace
36
+ tortoise resin palm leaf earrings fashion necklaces earrings for women girls
37
+ - https://www.amazon.com/dp/B09X19HV5D
38
+ - zesica womens 2023 summer bohemian solid color lace trim flowy a line beach long
39
+ maxi skirt with pockets
40
+ - source_sentence: DHRUVI TRENDZ Men's Shirts || Rayon Tropical Printed Shirts for
41
+ Men || Summer Wear Shirt for Men || Perfect for Outing || Vacation || DateWear
42
+ Shirt for Boys || Gift for Men
43
+ sentences:
44
+ - om sai latest creation shirt for men rayon shirts for men tropical leaf printed
45
+ short sleeve spread collar shirts for boy casual beach wear festive shirt for
46
+ men
47
+ - https://www.amazon.in/dp/B0C18PR364
48
+ - Men's Fashion Products Are Our partywear outfit collection for men includes a
49
+ shirt neckline, Short-sleeves, and a button placket on the front. Perfect Regular
50
+ Fit with Best Look. simple spread collar and soft felt in the fabric which makes
51
+ the shirt very easy and comfortable to wear casually. From the newest designs
52
+ and trendiest styles for men we are making fashionable clothing affordable. Shirts
53
+ feel soft and light on the body. Pairing with the right colored denim we can imagine
54
+ the outfit is best suited for dining parties and night outs. Our men's Tropical
55
+ shirts are made of the Best fabric which is lightweight and breathable. Perfect
56
+ for summer and hot weather keeps your body dry and comfortable all day. This casual
57
+ summer shirts design with a Fancy Hawaii collar, short sleeve, botton down, Tropical
58
+ print and classic regular fit. This beach shirts with multiple unique color and
59
+ pattern, each of which is a unique experience, make you shine this summer. Perfect
60
+ gift for yourself, families, or friends. Perfect for camp, sun beach, birthday
61
+ party, vacation, bachelor party, cruise, camp, or any casual daily wear.
62
+ - source_sentence: Molie Bridal Austrian Crystal Necklace and Earrings Jewelry Set
63
+ Gifts fit with Wedding Dress
64
+ sentences:
65
+ - You should have this jewelry set near you all the time since it is so fashion
66
+ and eye-catching. You can wear it and have it with you to support you wherever
67
+ you go. Make a statement with this wonderful jewelry set. Molie Molie has been
68
+ found for many years, referred to "Molie", which denotes to treat all of the world's
69
+ women like an Molie jewelry and meet their fantasies and satisfactions. We have
70
+ our own factory to ensure our items' plating and the strict criteria of the plating
71
+ thickness. The physical characteristics of human require us to adopt a higher
72
+ standard of plating process. At the same time, it create a good condition to reduce
73
+ production cost while maintain high quality of our item. Moreover, We are committed
74
+ to provide customers with competitive products and best customer services, since
75
+ its inception has been its high quality themselves, stylish design, superb manufacturing
76
+ process. Besides, we concentrate on improving the service based on the creative,
77
+ showing brand attributes. All in all, we take Customers' satisfactions as our
78
+ first priority.
79
+ - https://www.amazon.com/dp/B071VM3BKW
80
+ - coofandy mens short sleeve hoodie relaxed fit fashion casual sweatshirts lightweight
81
+ hip hop streetwear t shirts
82
+ - source_sentence: Steve Madden Clutch Crossbody
83
+ sentences:
84
+ - https://www.amazon.com/dp/B07VCDT9VR
85
+ - See and BSCENE with this Clear bag. Carry it as a crossbody or clutch. The exterior
86
+ is Clear and includes an internal pouch.
87
+ - womens dezier mens regular shirt 6032sformal1110multicolor extra large
88
+ model-index:
89
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
90
+ results:
91
+ - task:
92
+ type: triplet
93
+ name: Triplet
94
+ dataset:
95
+ name: Unknown
96
+ type: unknown
97
+ metrics:
98
+ - type: cosine_accuracy
99
+ value: 1.0
100
+ name: Cosine Accuracy
101
+ - type: dot_accuracy
102
+ value: 0.0
103
+ name: Dot Accuracy
104
+ - type: manhattan_accuracy
105
+ value: 1.0
106
+ name: Manhattan Accuracy
107
+ - type: euclidean_accuracy
108
+ value: 1.0
109
+ name: Euclidean Accuracy
110
+ - type: max_accuracy
111
+ value: 1.0
112
+ name: Max Accuracy
113
+ ---
114
+
115
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
116
+
117
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
118
+
119
+ ## Model Details
120
+
121
+ ### Model Description
122
+ - **Model Type:** Sentence Transformer
123
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
124
+ - **Maximum Sequence Length:** 256 tokens
125
+ - **Output Dimensionality:** 384 tokens
126
+ - **Similarity Function:** Cosine Similarity
127
+ <!-- - **Training Dataset:** Unknown -->
128
+ <!-- - **Language:** Unknown -->
129
+ <!-- - **License:** Unknown -->
130
+
131
+ ### Model Sources
132
+
133
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
134
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
135
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
136
+
137
+ ### Full Model Architecture
138
+
139
+ ```
140
+ SentenceTransformer(
141
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
142
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
143
+ (2): Normalize()
144
+ )
145
+ ```
146
+
147
+ ## Usage
148
+
149
+ ### Direct Usage (Sentence Transformers)
150
+
151
+ First install the Sentence Transformers library:
152
+
153
+ ```bash
154
+ pip install -U sentence-transformers
155
+ ```
156
+
157
+ Then you can load this model and run inference.
158
+ ```python
159
+ from sentence_transformers import SentenceTransformer
160
+
161
+ # Download from the 🤗 Hub
162
+ model = SentenceTransformer("sentence_transformers_model_id")
163
+ # Run inference
164
+ sentences = [
165
+ 'Steve Madden Clutch Crossbody',
166
+ 'See and BSCENE with this Clear bag. Carry it as a crossbody or clutch. The exterior is Clear and includes an internal pouch.',
167
+ 'https://www.amazon.com/dp/B07VCDT9VR',
168
+ ]
169
+ embeddings = model.encode(sentences)
170
+ print(embeddings.shape)
171
+ # [3, 384]
172
+
173
+ # Get the similarity scores for the embeddings
174
+ similarities = model.similarity(embeddings, embeddings)
175
+ print(similarities.shape)
176
+ # [3, 3]
177
+ ```
178
+
179
+ <!--
180
+ ### Direct Usage (Transformers)
181
+
182
+ <details><summary>Click to see the direct usage in Transformers</summary>
183
+
184
+ </details>
185
+ -->
186
+
187
+ <!--
188
+ ### Downstream Usage (Sentence Transformers)
189
+
190
+ You can finetune this model on your own dataset.
191
+
192
+ <details><summary>Click to expand</summary>
193
+
194
+ </details>
195
+ -->
196
+
197
+ <!--
198
+ ### Out-of-Scope Use
199
+
200
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
201
+ -->
202
+
203
+ ## Evaluation
204
+
205
+ ### Metrics
206
+
207
+ #### Triplet
208
+
209
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
210
+
211
+ | Metric | Value |
212
+ |:-------------------|:--------|
213
+ | cosine_accuracy | 1.0 |
214
+ | dot_accuracy | 0.0 |
215
+ | manhattan_accuracy | 1.0 |
216
+ | euclidean_accuracy | 1.0 |
217
+ | **max_accuracy** | **1.0** |
218
+
219
+ <!--
220
+ ## Bias, Risks and Limitations
221
+
222
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
223
+ -->
224
+
225
+ <!--
226
+ ### Recommendations
227
+
228
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
229
+ -->
230
+
231
+ ## Training Details
232
+
233
+ ### Training Dataset
234
+
235
+ #### Unnamed Dataset
236
+
237
+
238
+ * Size: 2,320 training samples
239
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
240
+ * Approximate statistics based on the first 1000 samples:
241
+ | | anchor | positive | negative |
242
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
243
+ | type | string | string | string |
244
+ | details | <ul><li>min: 5 tokens</li><li>mean: 21.75 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 59.78 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 23.3 tokens</li><li>max: 25 tokens</li></ul> |
245
+ * Samples:
246
+ | anchor | positive | negative |
247
+ |:--------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------|
248
+ | <code>Shiaili Classic Plus Size Skirts for Women Flowy Pleated Midi Length Skirt</code> | <code>shiaili classic plus size skirts for women flowy pleated midi length skirt</code> | <code>https://www.amazon.com/dp/B0BMTRJRG6</code> |
249
+ | <code>ANRABESS Women's Casual Long Sleeve Draped Open Front Knit Pockets Long Cardigan Jackets Sweater</code> | <code>anrabess womens casual long sleeve draped open front knit pockets long cardigan jackets sweater</code> | <code>https://www.amazon.com/dp/B0B2W6QGYB</code> |
250
+ | <code>RipSkirt Hawaii | Length 2 with Pockets | Quick Wrap, Quick Dry, Travel Skirt with Side Pockets</code> | <code>RipSkirt Hawaii is the active woman’s perfect skirt. Wear your RipSkirt straight from the beach to the bistro, we’ve got you covered. Our custom fabric doesn’t cling, flatters almost every figure, repels water, and dries quickly if soaked. [no more wet bum marks when leaving the pool] Length 2 is our most popular length and is perfect for work, play, and around town and has side pockets deep enough for a large phone. Content: 93% polyester 7% spandex</code> | <code>https://www.amazon.com/dp/B09X714HBM</code> |
251
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
252
+ ```json
253
+ {
254
+ "scale": 20.0,
255
+ "similarity_fct": "cos_sim"
256
+ }
257
+ ```
258
+
259
+ ### Evaluation Dataset
260
+
261
+ #### Unnamed Dataset
262
+
263
+
264
+ * Size: 580 evaluation samples
265
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
266
+ * Approximate statistics based on the first 1000 samples:
267
+ | | anchor | positive | negative |
268
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
269
+ | type | string | string | string |
270
+ | details | <ul><li>min: 4 tokens</li><li>mean: 21.92 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 55.98 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 23.37 tokens</li><li>max: 25 tokens</li></ul> |
271
+ * Samples:
272
+ | anchor | positive | negative |
273
+ |:---------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------|
274
+ | <code>Hotouch Lightweight Crochet Cardigan for Women Long Sleeve Open Front Knit Oversized Cardigans Sweaters</code> | <code>hotouch lightweight crochet cardigan for women long sleeve open front knit oversized cardigans sweaters</code> | <code>https://www.amazon.com/dp/B0C1FM1JDZ</code> |
275
+ | <code>SEIKO Men's SNK809 5 Automatic Stainless Steel Watch with Black Canvas Strap</code> | <code>Black dial. Silver-tone stainless steel case with a black canvas band. Automatic movement. 30 meters / 100 feet water resistance. Fixed bezel. Tang clasp. Case size 37 mm x 11 mm. Seiko SNK809 Seiko 5 Watch.The Seiko 5 Men's Automatic Black Strap Black Dial Watch is a stylish timepiece with the convenience of automatic movement. A uniquely designed, black dial features white Arabic numbers marking the hours on an inner circle and the minutes on an outer circle, while small, bar indexes encircle the dial on an outside minute track. Silver-tone hands with luminous fill make it easy to tell time day or night, and the slim second hand is detailed with a red accent. For added convenience, a day and date display are set at three o'clock. The polished stainless steel case extends to meet the black nylon strap, which wraps comfortably around the wrist and fastens with a traditional buckle. Water resistant to 30 feet (100 meters), this high-performance watch is perfect for everyday wear.This is an automatic mechanical watch. Automatic watches do not operate on batteries, instead, they are powered automatically by the movement of the wearer’s arm. If the main spring in your automatic watch is not wound sufficiently, timekeeping may become less accurate. In order to maintain accuracy, wear the watch for 8 hours or more per day, or manually wind the main spring by turning the crown. When not in use, automatic watches may be kept charged with an automatic watch winder – a watch storage unit which may be purchased separately. From Humble beginnings, Kintaro Hattori’s Vision for Seiko has become reality. A consuming passion for excellence - imprinted in our Corporate DNA passed from generation to generation. Seiko, for 125 years committed to the art and science of time. A culture of innovation connects a 19th century Tokyo clock shop with 20th century advances in timekeeping to an extraordinary 21st century "quiet revolution." Continually driven by dedication and passion, established a multitude of world’s first technologies… transforming the principles of timekeeping. The first quartz wristwatch – changed the history of time. The first Kinetic – marked a new era in quartz watch technology. In 1969, Seiko Astron, the first quartz wristwatch - was introduced. In an instant, Seiko exponentially improved the accuracy of wristwatches –And Seiko technology firmly established today’s standard in Olympic and sports timing. 1984, another celebrated first – Kinetic Technology – powered by body movement. Kinetic – a quartz mechanism with unparalleled accuracy –the driving force behind more world’s firsts. Kinetic Chronograph – the next generation of high performance timekeeping. Kinetic Auto Relay – automatically resets to the correct time. Kinetic Perpetual - combining the date perfect technology of perpetual calendar with the genius of Kinetic Auto Relay. And now Kinetic Direct Drive – move, and the watch is powered automatically. Or hand wind it and see the power you are generating in real time. In the realm of fine watches, time is measured by Seiko innovation – A heritage of dedication to the art and science of time.See more</code> | <code>https://www.amazon.com/dp/B002SSUQFG</code> |
276
+ | <code>Carhartt Men's Rain Defender Loose Fit Midweight Thermal-Lined Full-Zip Sweatshirt</code> | <code>This men's full-zip sweatshirt is equipped for light rain. Made from midweight fleece with a water-repellent finish and thermal lining. Features inner and outer pockets that include storage for your phone. 10.5-ounce, 50% cotton / 50% polyester fleece. Polyester fleece lining for warmth. Rain Defender® durable water repellent (DWR) keeps you dry and moving in light rain. Original fit. Full-zip front with brass zipper. Attached, thermal-lined three-piece hood with drawcord closure. Spandex-reinforced rib-knit cuffs and waist help keep out the cold. Two front handwarmer pockets with flaps for added security. Hidden media pocket. Inside pocket with zipper closure. Locker loop.</code> | <code>https://www.amazon.com/dp/B08BG5V4KR</code> |
277
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
278
+ ```json
279
+ {
280
+ "scale": 20.0,
281
+ "similarity_fct": "cos_sim"
282
+ }
283
+ ```
284
+
285
+ ### Training Hyperparameters
286
+ #### Non-Default Hyperparameters
287
+
288
+ - `eval_strategy`: epoch
289
+ - `per_device_eval_batch_size`: 16
290
+ - `learning_rate`: 3e-05
291
+ - `lr_scheduler_type`: cosine
292
+ - `warmup_ratio`: 0.1
293
+ - `load_best_model_at_end`: True
294
+ - `ddp_find_unused_parameters`: False
295
+
296
+ #### All Hyperparameters
297
+ <details><summary>Click to expand</summary>
298
+
299
+ - `overwrite_output_dir`: False
300
+ - `do_predict`: False
301
+ - `eval_strategy`: epoch
302
+ - `prediction_loss_only`: True
303
+ - `per_device_train_batch_size`: 8
304
+ - `per_device_eval_batch_size`: 16
305
+ - `per_gpu_train_batch_size`: None
306
+ - `per_gpu_eval_batch_size`: None
307
+ - `gradient_accumulation_steps`: 1
308
+ - `eval_accumulation_steps`: None
309
+ - `learning_rate`: 3e-05
310
+ - `weight_decay`: 0.0
311
+ - `adam_beta1`: 0.9
312
+ - `adam_beta2`: 0.999
313
+ - `adam_epsilon`: 1e-08
314
+ - `max_grad_norm`: 1.0
315
+ - `num_train_epochs`: 3
316
+ - `max_steps`: -1
317
+ - `lr_scheduler_type`: cosine
318
+ - `lr_scheduler_kwargs`: {}
319
+ - `warmup_ratio`: 0.1
320
+ - `warmup_steps`: 0
321
+ - `log_level`: passive
322
+ - `log_level_replica`: warning
323
+ - `log_on_each_node`: True
324
+ - `logging_nan_inf_filter`: True
325
+ - `save_safetensors`: True
326
+ - `save_on_each_node`: False
327
+ - `save_only_model`: False
328
+ - `restore_callback_states_from_checkpoint`: False
329
+ - `no_cuda`: False
330
+ - `use_cpu`: False
331
+ - `use_mps_device`: False
332
+ - `seed`: 42
333
+ - `data_seed`: None
334
+ - `jit_mode_eval`: False
335
+ - `use_ipex`: False
336
+ - `bf16`: False
337
+ - `fp16`: False
338
+ - `fp16_opt_level`: O1
339
+ - `half_precision_backend`: auto
340
+ - `bf16_full_eval`: False
341
+ - `fp16_full_eval`: False
342
+ - `tf32`: None
343
+ - `local_rank`: 0
344
+ - `ddp_backend`: None
345
+ - `tpu_num_cores`: None
346
+ - `tpu_metrics_debug`: False
347
+ - `debug`: []
348
+ - `dataloader_drop_last`: False
349
+ - `dataloader_num_workers`: 0
350
+ - `dataloader_prefetch_factor`: None
351
+ - `past_index`: -1
352
+ - `disable_tqdm`: False
353
+ - `remove_unused_columns`: True
354
+ - `label_names`: None
355
+ - `load_best_model_at_end`: True
356
+ - `ignore_data_skip`: False
357
+ - `fsdp`: []
358
+ - `fsdp_min_num_params`: 0
359
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
360
+ - `fsdp_transformer_layer_cls_to_wrap`: None
361
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
362
+ - `deepspeed`: None
363
+ - `label_smoothing_factor`: 0.0
364
+ - `optim`: adamw_torch
365
+ - `optim_args`: None
366
+ - `adafactor`: False
367
+ - `group_by_length`: False
368
+ - `length_column_name`: length
369
+ - `ddp_find_unused_parameters`: False
370
+ - `ddp_bucket_cap_mb`: None
371
+ - `ddp_broadcast_buffers`: False
372
+ - `dataloader_pin_memory`: True
373
+ - `dataloader_persistent_workers`: False
374
+ - `skip_memory_metrics`: True
375
+ - `use_legacy_prediction_loop`: False
376
+ - `push_to_hub`: False
377
+ - `resume_from_checkpoint`: None
378
+ - `hub_model_id`: None
379
+ - `hub_strategy`: every_save
380
+ - `hub_private_repo`: False
381
+ - `hub_always_push`: False
382
+ - `gradient_checkpointing`: False
383
+ - `gradient_checkpointing_kwargs`: None
384
+ - `include_inputs_for_metrics`: False
385
+ - `eval_do_concat_batches`: True
386
+ - `fp16_backend`: auto
387
+ - `push_to_hub_model_id`: None
388
+ - `push_to_hub_organization`: None
389
+ - `mp_parameters`:
390
+ - `auto_find_batch_size`: False
391
+ - `full_determinism`: False
392
+ - `torchdynamo`: None
393
+ - `ray_scope`: last
394
+ - `ddp_timeout`: 1800
395
+ - `torch_compile`: False
396
+ - `torch_compile_backend`: None
397
+ - `torch_compile_mode`: None
398
+ - `dispatch_batches`: None
399
+ - `split_batches`: None
400
+ - `include_tokens_per_second`: False
401
+ - `include_num_input_tokens_seen`: False
402
+ - `neftune_noise_alpha`: None
403
+ - `optim_target_modules`: None
404
+ - `batch_eval_metrics`: False
405
+ - `eval_on_start`: False
406
+ - `batch_sampler`: batch_sampler
407
+ - `multi_dataset_batch_sampler`: proportional
408
+
409
+ </details>
410
+
411
+ ### Training Logs
412
+ | Epoch | Step | Training Loss | loss | max_accuracy |
413
+ |:------:|:----:|:-------------:|:------:|:------------:|
414
+ | 0.0862 | 25 | 0.3631 | - | - |
415
+ | 0.1724 | 50 | 0.1219 | - | - |
416
+ | 0.2586 | 75 | 0.1909 | - | - |
417
+ | 0.3448 | 100 | 0.24 | - | - |
418
+ | 0.4310 | 125 | 0.1607 | - | - |
419
+ | 0.5172 | 150 | 0.1103 | - | - |
420
+ | 0.6034 | 175 | 0.0952 | - | - |
421
+ | 0.6897 | 200 | 0.1139 | - | - |
422
+ | 0.7759 | 225 | 0.1335 | - | - |
423
+ | 0.8621 | 250 | 0.0758 | - | - |
424
+ | 0.9483 | 275 | 0.0902 | - | - |
425
+ | 1.0 | 290 | - | 0.0700 | 1.0 |
426
+ | 1.0345 | 300 | 0.0951 | - | - |
427
+ | 1.1207 | 325 | 0.0373 | - | - |
428
+ | 1.2069 | 350 | 0.086 | - | - |
429
+ | 1.2931 | 375 | 0.0418 | - | - |
430
+ | 1.3793 | 400 | 0.0522 | - | - |
431
+ | 1.4655 | 425 | 0.0387 | - | - |
432
+ | 1.5517 | 450 | 0.0217 | - | - |
433
+ | 1.6379 | 475 | 0.0455 | - | - |
434
+ | 1.7241 | 500 | 0.0424 | - | - |
435
+ | 1.8103 | 525 | 0.0238 | - | - |
436
+ | 1.8966 | 550 | 0.0355 | - | - |
437
+ | 1.9828 | 575 | 0.0283 | - | - |
438
+ | 2.0 | 580 | - | 0.0597 | 1.0 |
439
+ | 2.0690 | 600 | 0.0213 | - | - |
440
+ | 2.1552 | 625 | 0.0219 | - | - |
441
+ | 2.2414 | 650 | 0.0254 | - | - |
442
+ | 2.3276 | 675 | 0.0204 | - | - |
443
+ | 2.4138 | 700 | 0.0052 | - | - |
444
+ | 2.5 | 725 | 0.0248 | - | - |
445
+ | 2.5862 | 750 | 0.0507 | - | - |
446
+ | 2.6724 | 775 | 0.0191 | - | - |
447
+ | 2.7586 | 800 | 0.018 | - | - |
448
+ | 2.8448 | 825 | 0.0176 | - | - |
449
+ | 2.9310 | 850 | 0.0193 | - | - |
450
+ | 3.0 | 870 | - | 0.0566 | 1.0 |
451
+
452
+
453
+ ### Framework Versions
454
+ - Python: 3.10.14
455
+ - Sentence Transformers: 3.0.1
456
+ - Transformers: 4.42.2
457
+ - PyTorch: 2.3.0
458
+ - Accelerate: 0.31.0
459
+ - Datasets: 2.19.1
460
+ - Tokenizers: 0.19.1
461
+
462
+ ## Citation
463
+
464
+ ### BibTeX
465
+
466
+ #### Sentence Transformers
467
+ ```bibtex
468
+ @inproceedings{reimers-2019-sentence-bert,
469
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
470
+ author = "Reimers, Nils and Gurevych, Iryna",
471
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
472
+ month = "11",
473
+ year = "2019",
474
+ publisher = "Association for Computational Linguistics",
475
+ url = "https://arxiv.org/abs/1908.10084",
476
+ }
477
+ ```
478
+
479
+ #### MultipleNegativesRankingLoss
480
+ ```bibtex
481
+ @misc{henderson2017efficient,
482
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
483
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
484
+ year={2017},
485
+ eprint={1705.00652},
486
+ archivePrefix={arXiv},
487
+ primaryClass={cs.CL}
488
+ }
489
+ ```
490
+
491
+ <!--
492
+ ## Glossary
493
+
494
+ *Clearly define terms in order to be accessible across audiences.*
495
+ -->
496
+
497
+ <!--
498
+ ## Model Card Authors
499
+
500
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
501
+ -->
502
+
503
+ <!--
504
+ ## Model Card Contact
505
+
506
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
507
+ -->
checkpoint-870/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
checkpoint-870/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.2",
5
+ "pytorch": "2.3.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
checkpoint-870/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69780659bede833deee14ca959b873c99913be07d30b0c0c73b280eef5c9a9fd
3
+ size 90864192
checkpoint-870/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-870/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e03f6d8282b128bb663573387512f87aab2b554007f0a8a97403b6e47645874
3
+ size 180604922
checkpoint-870/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10aec0abd52399d06400eeec3b930f163c21faa6bc2fee365117253ee1fc74d3
3
+ size 13990
checkpoint-870/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:699b01bf70f7f8c2baf866acb81eb20509ed86cb04c73c7831fc212ff22c8b46
3
+ size 1064
checkpoint-870/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-870/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-870/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-870/tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
checkpoint-870/trainer_state.json ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.056603044271469116,
3
+ "best_model_checkpoint": "autotrain-rp16o-pxwa0/checkpoint-870",
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 870,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.08620689655172414,
13
+ "grad_norm": 3.290644645690918,
14
+ "learning_rate": 8.620689655172414e-06,
15
+ "loss": 0.3631,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.1724137931034483,
20
+ "grad_norm": 10.116286277770996,
21
+ "learning_rate": 1.7241379310344828e-05,
22
+ "loss": 0.1219,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.25862068965517243,
27
+ "grad_norm": 0.6143497228622437,
28
+ "learning_rate": 2.586206896551724e-05,
29
+ "loss": 0.1909,
30
+ "step": 75
31
+ },
32
+ {
33
+ "epoch": 0.3448275862068966,
34
+ "grad_norm": 0.007788954768329859,
35
+ "learning_rate": 2.9979600208641352e-05,
36
+ "loss": 0.24,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.43103448275862066,
41
+ "grad_norm": 6.688470840454102,
42
+ "learning_rate": 2.9825994400778473e-05,
43
+ "loss": 0.1607,
44
+ "step": 125
45
+ },
46
+ {
47
+ "epoch": 0.5172413793103449,
48
+ "grad_norm": 6.3299055099487305,
49
+ "learning_rate": 2.952334410903845e-05,
50
+ "loss": 0.1103,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.603448275862069,
55
+ "grad_norm": 0.13505378365516663,
56
+ "learning_rate": 2.907469185153564e-05,
57
+ "loss": 0.0952,
58
+ "step": 175
59
+ },
60
+ {
61
+ "epoch": 0.6896551724137931,
62
+ "grad_norm": 6.772790431976318,
63
+ "learning_rate": 2.8484547891956387e-05,
64
+ "loss": 0.1139,
65
+ "step": 200
66
+ },
67
+ {
68
+ "epoch": 0.7758620689655172,
69
+ "grad_norm": 2.550690174102783,
70
+ "learning_rate": 2.775884489825476e-05,
71
+ "loss": 0.1335,
72
+ "step": 225
73
+ },
74
+ {
75
+ "epoch": 0.8620689655172413,
76
+ "grad_norm": 11.232149124145508,
77
+ "learning_rate": 2.6904878302036937e-05,
78
+ "loss": 0.0758,
79
+ "step": 250
80
+ },
81
+ {
82
+ "epoch": 0.9482758620689655,
83
+ "grad_norm": 1.9099515676498413,
84
+ "learning_rate": 2.5931232958196343e-05,
85
+ "loss": 0.0902,
86
+ "step": 275
87
+ },
88
+ {
89
+ "epoch": 1.0,
90
+ "eval_cosine_accuracy": 1.0,
91
+ "eval_dot_accuracy": 0.0,
92
+ "eval_euclidean_accuracy": 1.0,
93
+ "eval_loss": 0.06996160000562668,
94
+ "eval_manhattan_accuracy": 1.0,
95
+ "eval_max_accuracy": 1.0,
96
+ "eval_runtime": 44.8595,
97
+ "eval_samples_per_second": 12.929,
98
+ "eval_steps_per_second": 0.825,
99
+ "step": 290
100
+ },
101
+ {
102
+ "epoch": 1.0344827586206897,
103
+ "grad_norm": 0.029423370957374573,
104
+ "learning_rate": 2.48476968420842e-05,
105
+ "loss": 0.0951,
106
+ "step": 300
107
+ },
108
+ {
109
+ "epoch": 1.1206896551724137,
110
+ "grad_norm": 0.830912709236145,
111
+ "learning_rate": 2.3665162651810512e-05,
112
+ "loss": 0.0373,
113
+ "step": 325
114
+ },
115
+ {
116
+ "epoch": 1.206896551724138,
117
+ "grad_norm": 8.924799919128418,
118
+ "learning_rate": 2.2395518304859387e-05,
119
+ "loss": 0.086,
120
+ "step": 350
121
+ },
122
+ {
123
+ "epoch": 1.293103448275862,
124
+ "grad_norm": 8.515233039855957,
125
+ "learning_rate": 2.105152742984713e-05,
126
+ "loss": 0.0418,
127
+ "step": 375
128
+ },
129
+ {
130
+ "epoch": 1.3793103448275863,
131
+ "grad_norm": 0.07946328073740005,
132
+ "learning_rate": 1.964670105482938e-05,
133
+ "loss": 0.0522,
134
+ "step": 400
135
+ },
136
+ {
137
+ "epoch": 1.4655172413793103,
138
+ "grad_norm": 0.027938440442085266,
139
+ "learning_rate": 1.8195161782064143e-05,
140
+ "loss": 0.0387,
141
+ "step": 425
142
+ },
143
+ {
144
+ "epoch": 1.5517241379310345,
145
+ "grad_norm": 0.20512813329696655,
146
+ "learning_rate": 1.6711501814670373e-05,
147
+ "loss": 0.0217,
148
+ "step": 450
149
+ },
150
+ {
151
+ "epoch": 1.6379310344827587,
152
+ "grad_norm": 0.04595763236284256,
153
+ "learning_rate": 1.5210636262428347e-05,
154
+ "loss": 0.0455,
155
+ "step": 475
156
+ },
157
+ {
158
+ "epoch": 1.7241379310344827,
159
+ "grad_norm": 0.002501540817320347,
160
+ "learning_rate": 1.3707653201426321e-05,
161
+ "loss": 0.0424,
162
+ "step": 500
163
+ },
164
+ {
165
+ "epoch": 1.8103448275862069,
166
+ "grad_norm": 0.4840604364871979,
167
+ "learning_rate": 1.2217661994891308e-05,
168
+ "loss": 0.0238,
169
+ "step": 525
170
+ },
171
+ {
172
+ "epoch": 1.896551724137931,
173
+ "grad_norm": 13.134848594665527,
174
+ "learning_rate": 1.075564140002207e-05,
175
+ "loss": 0.0355,
176
+ "step": 550
177
+ },
178
+ {
179
+ "epoch": 1.9827586206896552,
180
+ "grad_norm": 1.2007379531860352,
181
+ "learning_rate": 9.33628898779359e-06,
182
+ "loss": 0.0283,
183
+ "step": 575
184
+ },
185
+ {
186
+ "epoch": 2.0,
187
+ "eval_cosine_accuracy": 1.0,
188
+ "eval_dot_accuracy": 0.0,
189
+ "eval_euclidean_accuracy": 1.0,
190
+ "eval_loss": 0.059745438396930695,
191
+ "eval_manhattan_accuracy": 1.0,
192
+ "eval_max_accuracy": 1.0,
193
+ "eval_runtime": 45.055,
194
+ "eval_samples_per_second": 12.873,
195
+ "eval_steps_per_second": 0.821,
196
+ "step": 580
197
+ },
198
+ {
199
+ "epoch": 2.0689655172413794,
200
+ "grad_norm": 0.010960499756038189,
201
+ "learning_rate": 7.97387338950315e-06,
202
+ "loss": 0.0213,
203
+ "step": 600
204
+ },
205
+ {
206
+ "epoch": 2.1551724137931036,
207
+ "grad_norm": 0.004453401546925306,
208
+ "learning_rate": 6.682090855411221e-06,
209
+ "loss": 0.0219,
210
+ "step": 625
211
+ },
212
+ {
213
+ "epoch": 2.2413793103448274,
214
+ "grad_norm": 7.022181987762451,
215
+ "learning_rate": 5.473927567481096e-06,
216
+ "loss": 0.0254,
217
+ "step": 650
218
+ },
219
+ {
220
+ "epoch": 2.3275862068965516,
221
+ "grad_norm": 1.2289260625839233,
222
+ "learning_rate": 4.361529090375834e-06,
223
+ "loss": 0.0204,
224
+ "step": 675
225
+ },
226
+ {
227
+ "epoch": 2.413793103448276,
228
+ "grad_norm": 0.006588762626051903,
229
+ "learning_rate": 3.35607827311076e-06,
230
+ "loss": 0.0052,
231
+ "step": 700
232
+ },
233
+ {
234
+ "epoch": 2.5,
235
+ "grad_norm": 2.5081865787506104,
236
+ "learning_rate": 2.467682828805956e-06,
237
+ "loss": 0.0248,
238
+ "step": 725
239
+ },
240
+ {
241
+ "epoch": 2.586206896551724,
242
+ "grad_norm": 17.075759887695312,
243
+ "learning_rate": 1.7052737226901876e-06,
244
+ "loss": 0.0507,
245
+ "step": 750
246
+ },
247
+ {
248
+ "epoch": 2.6724137931034484,
249
+ "grad_norm": 0.9192395806312561,
250
+ "learning_rate": 1.0765153898531083e-06,
251
+ "loss": 0.0191,
252
+ "step": 775
253
+ },
254
+ {
255
+ "epoch": 2.7586206896551726,
256
+ "grad_norm": 0.03410585597157478,
257
+ "learning_rate": 5.877286853191999e-07,
258
+ "loss": 0.018,
259
+ "step": 800
260
+ },
261
+ {
262
+ "epoch": 2.844827586206897,
263
+ "grad_norm": 0.09378518909215927,
264
+ "learning_rate": 2.438273410199598e-07,
265
+ "loss": 0.0176,
266
+ "step": 825
267
+ },
268
+ {
269
+ "epoch": 2.9310344827586206,
270
+ "grad_norm": 0.024510715156793594,
271
+ "learning_rate": 4.826856845703165e-08,
272
+ "loss": 0.0193,
273
+ "step": 850
274
+ },
275
+ {
276
+ "epoch": 3.0,
277
+ "eval_cosine_accuracy": 1.0,
278
+ "eval_dot_accuracy": 0.0,
279
+ "eval_euclidean_accuracy": 1.0,
280
+ "eval_loss": 0.056603044271469116,
281
+ "eval_manhattan_accuracy": 1.0,
282
+ "eval_max_accuracy": 1.0,
283
+ "eval_runtime": 43.366,
284
+ "eval_samples_per_second": 13.375,
285
+ "eval_steps_per_second": 0.853,
286
+ "step": 870
287
+ }
288
+ ],
289
+ "logging_steps": 25,
290
+ "max_steps": 870,
291
+ "num_input_tokens_seen": 0,
292
+ "num_train_epochs": 3,
293
+ "save_steps": 500,
294
+ "stateful_callbacks": {
295
+ "EarlyStoppingCallback": {
296
+ "args": {
297
+ "early_stopping_patience": 5,
298
+ "early_stopping_threshold": 0.01
299
+ },
300
+ "attributes": {
301
+ "early_stopping_patience_counter": 0
302
+ }
303
+ },
304
+ "TrainerControl": {
305
+ "args": {
306
+ "should_epoch_stop": false,
307
+ "should_evaluate": false,
308
+ "should_log": false,
309
+ "should_save": true,
310
+ "should_training_stop": true
311
+ },
312
+ "attributes": {}
313
+ }
314
+ },
315
+ "total_flos": 0.0,
316
+ "train_batch_size": 8,
317
+ "trial_name": null,
318
+ "trial_params": null
319
+ }
checkpoint-870/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a06674a005f23df1e09ea7e154679be6e3365d4bc0690dd5d156589705444192
3
+ size 5368
checkpoint-870/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.2",
5
+ "pytorch": "2.3.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69780659bede833deee14ca959b873c99913be07d30b0c0c73b280eef5c9a9fd
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/Jun28_17-15-52_r-shauryanova-fashio-f0iyutqz-dc8a7-17rpg/events.out.tfevents.1719594954.r-shauryanova-fashio-f0iyutqz-dc8a7-17rpg.100.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:54cc81359312bfc029814979324a3800d6cb9a37a3e6ca3e56aacf748894baae
3
- size 10831
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57386aed1a8b3c333cd78582f5bebebea4f2d00fc1d6a82bcfd30d20531ddb23
3
+ size 13439
runs/Jun28_17-15-52_r-shauryanova-fashio-f0iyutqz-dc8a7-17rpg/events.out.tfevents.1719596615.r-shauryanova-fashio-f0iyutqz-dc8a7-17rpg.100.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75de8ae06f52c3a1b48b5e34503358ba4d841c6c3faa31748042d8d1222f1e96
3
+ size 654
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a06674a005f23df1e09ea7e154679be6e3365d4bc0690dd5d156589705444192
3
+ size 5368
training_params.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data_path": "autotrain-rp16o-pxwa0/autotrain-data",
3
+ "model": "sentence-transformers/all-MiniLM-L6-v2",
4
+ "lr": 3e-05,
5
+ "epochs": 3,
6
+ "max_seq_length": 128,
7
+ "batch_size": 8,
8
+ "warmup_ratio": 0.1,
9
+ "gradient_accumulation": 1,
10
+ "optimizer": "adamw_torch",
11
+ "scheduler": "cosine",
12
+ "weight_decay": 0.0,
13
+ "max_grad_norm": 1.0,
14
+ "seed": 42,
15
+ "train_split": "train",
16
+ "valid_split": "validation",
17
+ "logging_steps": -1,
18
+ "project_name": "autotrain-rp16o-pxwa0",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "none",
21
+ "save_total_limit": 1,
22
+ "push_to_hub": true,
23
+ "eval_strategy": "epoch",
24
+ "username": "ShauryaNova",
25
+ "log": "tensorboard",
26
+ "early_stopping_patience": 5,
27
+ "early_stopping_threshold": 0.01,
28
+ "trainer": "triplet",
29
+ "sentence1_column": "autotrain_sentence1",
30
+ "sentence2_column": "autotrain_sentence2",
31
+ "sentence3_column": "autotrain_sentence3",
32
+ "target_column": "autotrain_target"
33
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff