Shiroi-max commited on
Commit
2dfe4e8
·
1 Parent(s): d09e5d1
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- datasets:
3
- - ylecun/mnist
4
  language:
5
  - en
6
  library_name: diffusers
 
 
7
  pipeline_tag: image-to-image
8
- ---
 
1
  ---
 
 
2
  language:
3
  - en
4
  library_name: diffusers
5
+ datasets:
6
+ - ylecun/mnist
7
  pipeline_tag: image-to-image
8
+ ---
logs/train_example/{events.out.tfevents.1717883137.federatedlearning.3604610.0 → events.out.tfevents.1717957992.federatedlearning.3567175.0} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b7059d895d52183be4c5673846a54856ab4b8b4c8e4970b5e7832e97d15fd691
3
- size 118824
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e74fd609038695d7ce5858ced8689f9ba7e04c5a4f8823a5d98fd5f135e72a7d
3
+ size 595328
model_index.json CHANGED
@@ -6,7 +6,7 @@
6
  "DDPMScheduler"
7
  ],
8
  "unet": [
9
- null,
10
- null
11
  ]
12
  }
 
6
  "DDPMScheduler"
7
  ],
8
  "unet": [
9
+ "diffusers",
10
+ "UNet2DModel"
11
  ]
12
  }
pipeline.py DELETED
@@ -1,62 +0,0 @@
1
- from typing import List, Optional, Tuple, Union
2
- from diffusers import DiffusionPipeline, ImagePipelineOutput
3
- from diffusers.utils.torch_utils import randn_tensor
4
-
5
- import torch
6
-
7
-
8
- class DDPMConditionalPipeline(DiffusionPipeline):
9
- model_cpu_offload_seq = "unet"
10
-
11
- def __init__(self, unet, scheduler):
12
- super().__init__()
13
- self.register_modules(unet=unet, scheduler=scheduler)
14
-
15
- @torch.no_grad()
16
- def __call__(
17
- self,
18
- label,
19
- batch_size: int = 1,
20
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
21
- num_inference_steps: int = 1000,
22
- output_type: Optional[str] = "pil",
23
- return_dict: bool = True,
24
- ) -> Union[ImagePipelineOutput, Tuple]:
25
- # Sample gaussian noise to begin loop
26
- if isinstance(self.unet.model.sample_size, int):
27
- image_shape = (
28
- batch_size,
29
- self.unet.model.in_channels,
30
- self.unet.model.sample_size,
31
- self.unet.model.sample_size,
32
- )
33
- else:
34
- image_shape = (
35
- batch_size,
36
- self.unet.model.in_channels,
37
- *self.unet.model.sample_size,
38
- )
39
-
40
- image = randn_tensor(image_shape, generator=generator)
41
-
42
- # set step values
43
- self.scheduler.set_timesteps(num_inference_steps)
44
-
45
- for t in self.progress_bar(self.scheduler.timesteps):
46
- # 1. predict noise model_output
47
- model_output = self.unet(image, t, label).sample
48
-
49
- # 2. compute previous image: x_t -> x_t-1
50
- image = self.scheduler.step(
51
- model_output, t, image, generator=generator
52
- ).prev_sample
53
-
54
- image = (image / 2 + 0.5).clamp(0, 1)
55
- image = image.cpu().permute(0, 2, 3, 1).numpy()
56
- if output_type == "pil":
57
- image = self.numpy_to_pil(image)
58
-
59
- if not return_dict:
60
- return (image,)
61
-
62
- return ImagePipelineOutput(images=image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
unet/config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet2DModel",
3
+ "_diffusers_version": "0.28.0",
4
+ "act_fn": "silu",
5
+ "add_attention": true,
6
+ "attention_head_dim": 8,
7
+ "attn_norm_num_groups": null,
8
+ "block_out_channels": [
9
+ 32,
10
+ 64,
11
+ 64
12
+ ],
13
+ "center_input_sample": false,
14
+ "class_embed_type": null,
15
+ "down_block_types": [
16
+ "DownBlock2D",
17
+ "AttnDownBlock2D",
18
+ "AttnDownBlock2D"
19
+ ],
20
+ "downsample_padding": 1,
21
+ "downsample_type": "conv",
22
+ "dropout": 0.0,
23
+ "flip_sin_to_cos": true,
24
+ "freq_shift": 0,
25
+ "in_channels": 1,
26
+ "layers_per_block": 2,
27
+ "mid_block_scale_factor": 1,
28
+ "norm_eps": 1e-05,
29
+ "norm_num_groups": 32,
30
+ "num_class_embeds": 10,
31
+ "num_train_timesteps": null,
32
+ "out_channels": 1,
33
+ "resnet_time_scale_shift": "default",
34
+ "sample_size": 32,
35
+ "time_embedding_type": "positional",
36
+ "up_block_types": [
37
+ "AttnUpBlock2D",
38
+ "AttnUpBlock2D",
39
+ "UpBlock2D"
40
+ ],
41
+ "upsample_type": "conv"
42
+ }
unet/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a58e881a5db3333ead19d140b55f8744ab337934c05d4cd30ddc3dc7a5734415
3
+ size 6865780