Shivraj8615
commited on
Commit
·
b8719a2
1
Parent(s):
8ba5b6d
Update PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 285.30 +/- 14.58
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9260ef05e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9260ef0670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9260ef0700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9260ef0790>", "_build": "<function ActorCriticPolicy._build at 0x7f9260ef0820>", "forward": "<function ActorCriticPolicy.forward at 0x7f9260ef08b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9260ef0940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9260ef09d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9260ef0a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9260ef0af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9260ef0b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9260ee8e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670654714735816324, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbeLrykvw+7wlbvvKrvCj0cuxA8wWHMtwAAgD8AAIA/5vQmvoYhCT/tvnS7zLYyvx4plb4u7gE+AAAAAAAAAAAAu0i94Wy3usIUVDfiE0EyOYcaOjrIcrYAAIA/AACAP81WxTwKriC74H0lu+GviTyOyjU8GzBuvQAAgD8AAIA/JmmIPlVHPz9uyk6+LjAyv2P94D7i+Yy+AAAAAAAAAABmwge8j451uvuTrDGr7SAqTzVhO8lhN7MAAIA/AACAP829cb1jTCU/XlGDvWEuVL/JRcy9isyfvAAAAAAAAAAAeqMWvtE5qz+gBB2/6xbcvtN0Vb4JUL6+AAAAAAAAAADNnP28d0FFPiAmPj1fZuq+4zRtvStT77wAAAAAAAAAAADNPj1knKw/LfQrPvC+3L6GlUQ+VfJGPgAAAAAAAAAAzRxJu7aUXz248X+8F9/LvjaFi7yw3F69AAAAAAAAAAAAcyI9FFiFusbOnDQ3oqyukC7YOjbQbrMAAIA/AACAP80AX70WJKY/oYmQvg2KAb88zHW9Ne4IvgAAAAAAAAAAzey3O/styTuajV++hbhJvtXADr79MmM/AACAPwAAAACgYhG+WqLZPrcFND7iTCG/5d0dvvah4j0AAAAAAAAAAFP7Vr5JzhM/GCMTvSOzJb/u+d6+njBCPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILZj4o2hXc0CUhpRSlIwBbJRLq4wBdJRHQLrWzv7FbV11fZQoaAZoCWgPQwiWdmouNzA5QJSGlFKUaBVLWmgWR0C61vQSFoL5dX2UKGgGaAloD0MIdTv7ykOIc0CUhpRSlGgVS8loFkdAutb374zrNXV9lChoBmgJaA9DCOoGCrzT53BAlIaUUpRoFUupaBZHQLrW+ULUkOZ1fZQoaAZoCWgPQwh4l4v4jmtyQJSGlFKUaBVLvWgWR0C61v1o6CDmdX2UKGgGaAloD0MI5C1XP7brb0CUhpRSlGgVS6ZoFkdAutwQz41xbXV9lChoBmgJaA9DCJ0ui4kN5XNAlIaUUpRoFUvMaBZHQLrcE43FUAF1fZQoaAZoCWgPQwgsKuJ0kltzQJSGlFKUaBVL2WgWR0C63CZiNKh+dX2UKGgGaAloD0MIBd1e0pgpcUCUhpRSlGgVS7NoFkdAutw31wo9cXV9lChoBmgJaA9DCJ9Yp8q383NAlIaUUpRoFUvaaBZHQLrcOYzzmOl1fZQoaAZoCWgPQwhblq/L8MpyQJSGlFKUaBVLzWgWR0C63DsiwB5pdX2UKGgGaAloD0MIQInPnaC8c0CUhpRSlGgVS7JoFkdAutxDGS6lL3V9lChoBmgJaA9DCKIL6ltmRnJAlIaUUpRoFUuQaBZHQLrcRn3cpLF1fZQoaAZoCWgPQwgurBvvjhZwQJSGlFKUaBVLoWgWR0C63GMRL9MsdX2UKGgGaAloD0MI7rWg9wYgc0CUhpRSlGgVS9BoFkdAutxjHEMspXV9lChoBmgJaA9DCDoHz4TmgHBAlIaUUpRoFUubaBZHQLrcZokzGgl1fZQoaAZoCWgPQwjkh0ojpt5xQJSGlFKUaBVLw2gWR0C63GprgwXZdX2UKGgGaAloD0MI9x4uOe55cECUhpRSlGgVS59oFkdAutyPBzmwJXV9lChoBmgJaA9DCK3e4XYo0nFAlIaUUpRoFUuvaBZHQLrcoSuQp4N1fZQoaAZoCWgPQwg3cAfqVHdzQJSGlFKUaBVLxGgWR0C63LqnWJ7+dX2UKGgGaAloD0MIOSUgJmH+c0CUhpRSlGgVS81oFkdAutzQSh8IA3V9lChoBmgJaA9DCP9aXrnetXBAlIaUUpRoFUuvaBZHQLrc568xsVN1fZQoaAZoCWgPQwgk7rH0IdtyQJSGlFKUaBVLuGgWR0C63PFeBxxUdX2UKGgGaAloD0MIfeiC+lbscECUhpRSlGgVS6poFkdAut0F5E+gUXV9lChoBmgJaA9DCOhNRSoMcnJAlIaUUpRoFUuuaBZHQLrdCWN3np11fZQoaAZoCWgPQwjJOhxdpStxQJSGlFKUaBVLtGgWR0C63ROaa1CxdX2UKGgGaAloD0MIvOtsyH/Hc0CUhpRSlGgVS8hoFkdAut0Xa4+bE3V9lChoBmgJaA9DCAq/1M+bfXJAlIaUUpRoFUu4aBZHQLrdJVOsT391fZQoaAZoCWgPQwiZKELqNkpwQJSGlFKUaBVLn2gWR0C63SdDpkf+dX2UKGgGaAloD0MIkMGKU+1QcUCUhpRSlGgVS75oFkdAut0pE3KjjHV9lChoBmgJaA9DCNHJUuu9xXJAlIaUUpRoFUu4aBZHQLrdSqiGnGd1fZQoaAZoCWgPQwga3UHsTBd0QJSGlFKUaBVLxmgWR0C63VPoicG1dX2UKGgGaAloD0MIdVsiFxx3c0CUhpRSlGgVS8doFkdAut1YkTpPh3V9lChoBmgJaA9DCOZZSSs+q3BAlIaUUpRoFUu0aBZHQLrdbMJQcgh1fZQoaAZoCWgPQwi8zob8syhzQJSGlFKUaBVLsmgWR0C63ZEc81XOdX2UKGgGaAloD0MICCKLNPEockCUhpRSlGgVS7ZoFkdAut2qRbKRuHV9lChoBmgJaA9DCPNzQ1M23nFAlIaUUpRoFUuHaBZHQLrdscLSeAd1fZQoaAZoCWgPQwi3fCQlfZ9zQJSGlFKUaBVL5WgWR0C63bpfYzzmdX2UKGgGaAloD0MILzVCP9PIcECUhpRSlGgVS7NoFkdAut29WEK3NXV9lChoBmgJaA9DCKRskbTb4nFAlIaUUpRoFUukaBZHQLrdyAuIyj51fZQoaAZoCWgPQwgU61T5nqtxQJSGlFKUaBVLvGgWR0C63dDVQQ+VdX2UKGgGaAloD0MIwlCHFS6wcECUhpRSlGgVS59oFkdAut3iZa3ZwnV9lChoBmgJaA9DCAqA8QzaJnNAlIaUUpRoFUu4aBZHQLrd5GqxTsJ1fZQoaAZoCWgPQwjshJfglPFwQJSGlFKUaBVLq2gWR0C63fNlI3BIdX2UKGgGaAloD0MIb2b0o+GVc0CUhpRSlGgVS8VoFkdAut4SJk5IYnV9lChoBmgJaA9DCH9OQX52JnFAlIaUUpRoFUuuaBZHQLreHWHDaXd1fZQoaAZoCWgPQwjDZoAL8klyQJSGlFKUaBVL4WgWR0C63iXb7CSBdX2UKGgGaAloD0MIAOKuXoUPcUCUhpRSlGgVS65oFkdAut4sdQwbl3V9lChoBmgJaA9DCCDwwABCAHNAlIaUUpRoFUvGaBZHQLreRMnZ00Z1fZQoaAZoCWgPQwh2iH/YktFyQJSGlFKUaBVLvmgWR0C63lTEm6XjdX2UKGgGaAloD0MItMcL6bBVcUCUhpRSlGgVS6doFkdAut50/D+BH3V9lChoBmgJaA9DCLfT1ojgFnRAlIaUUpRoFUvIaBZHQLrehOryUcJ1fZQoaAZoCWgPQwhIFjCBW/dwQJSGlFKUaBVLq2gWR0C63oo3vQWvdX2UKGgGaAloD0MIIJkOnR4jcUCUhpRSlGgVS7NoFkdAut6L7wazeHV9lChoBmgJaA9DCM7DCUxnC3NAlIaUUpRoFUuPaBZHQLrekZBcAzZ1fZQoaAZoCWgPQwhcdR2qqShxQJSGlFKUaBVLoGgWR0C63pNe6ZpjdX2UKGgGaAloD0MIcRx4tdxvckCUhpRSlGgVS61oFkdAut6ZXRw6yXV9lChoBmgJaA9DCBhanZxhNHNAlIaUUpRoFUvLaBZHQLrer8dPtUp1fZQoaAZoCWgPQwhgPIOGvv1zQJSGlFKUaBVLoWgWR0C63rMdtEXtdX2UKGgGaAloD0MI9poeFBQyc0CUhpRSlGgVS7doFkdAut660svqT3V9lChoBmgJaA9DCP2GiQYpCExAlIaUUpRoFUtxaBZHQLre1cwg1WN1fZQoaAZoCWgPQwhYdVYLbC10QJSGlFKUaBVLsmgWR0C63uVO45LidX2UKGgGaAloD0MI6DI1Cd5/cUCUhpRSlGgVS7doFkdAut711W8yvnV9lChoBmgJaA9DCNEF9S1zOnJAlIaUUpRoFUvLaBZHQLrfFWHk92Z1fZQoaAZoCWgPQwjsTnee+LxyQJSGlFKUaBVLtWgWR0C63xmsaKk3dX2UKGgGaAloD0MIeGNBYdArc0CUhpRSlGgVS9doFkdAut8sjKPn0XV9lChoBmgJaA9DCDvGFReHHHFAlIaUUpRoFUuraBZHQLrfQlvqC6J1fZQoaAZoCWgPQwimKJfGr3FwQJSGlFKUaBVLr2gWR0C631a9f1HwdX2UKGgGaAloD0MItyqJ7MMRc0CUhpRSlGgVS51oFkdAut9V4oqkM3V9lChoBmgJaA9DCBKhEWwcLHFAlIaUUpRoFUupaBZHQLrfW6dDpkh1fZQoaAZoCWgPQwgKEAUz5hdxQJSGlFKUaBVLsGgWR0C63103XI2gdX2UKGgGaAloD0MITDPd62RnckCUhpRSlGgVS7BoFkdAut9fFGXoknV9lChoBmgJaA9DCGmqJ/NP9XFAlIaUUpRoFUuxaBZHQLrfhqmj0th1fZQoaAZoCWgPQwiwHvetFhVxQJSGlFKUaBVLqmgWR0C634pz1bqydX2UKGgGaAloD0MI3e7lPnnKckCUhpRSlGgVS99oFkdAut+e9qUNa3V9lChoBmgJaA9DCBjpRe3+PnFAlIaUUpRoFUuiaBZHQLrfqvOQhfV1fZQoaAZoCWgPQwjb/L/qCCt0QJSGlFKUaBVL0GgWR0C637B2r4nGdX2UKGgGaAloD0MIN4jWijZIckCUhpRSlGgVS8doFkdAut/K03Ov+3V9lChoBmgJaA9DCJHWGHTCNHNAlIaUUpRoFUu5aBZHQLrf1xFAmiR1fZQoaAZoCWgPQwi7YkZ4e8FxQJSGlFKUaBVLlWgWR0C63/fCVKPGdX2UKGgGaAloD0MIXwzlRPuKc0CUhpRSlGgVS7doFkdAut/5rgwXZXV9lChoBmgJaA9DCBJnRdQEDHJAlIaUUpRoFUu/aBZHQLrf/zbeuV51fZQoaAZoCWgPQwjKFkm7ERlyQJSGlFKUaBVLkGgWR0C64AVmjCYUdX2UKGgGaAloD0MIE0ceiCxackCUhpRSlGgVS7toFkdAuuAN/I8yOHV9lChoBmgJaA9DCBcRxeQNE1JAlIaUUpRoFUtzaBZHQLrgFWP91lp1fZQoaAZoCWgPQwiyLQPOUm1yQJSGlFKUaBVLr2gWR0C64Cfa11GLdX2UKGgGaAloD0MIL6cExCT7cECUhpRSlGgVS69oFkdAuuAtyHVPN3V9lChoBmgJaA9DCLCMDd2sQHJAlIaUUpRoFUuwaBZHQLrgMZ9NN8F1fZQoaAZoCWgPQwjCps6jomFyQJSGlFKUaBVLtmgWR0C64DaeCkGidX2UKGgGaAloD0MI3J+LhoxKcUCUhpRSlGgVS6doFkdAuuBK8tf5UXV9lChoBmgJaA9DCJNxjGSPm3FAlIaUUpRoFUuhaBZHQLrgWQiA2AJ1fZQoaAZoCWgPQwji5elcEfVyQJSGlFKUaBVLpWgWR0C64G3Ty8SPdX2UKGgGaAloD0MIw9fXutSGb0CUhpRSlGgVS6BoFkdAuuCCk30f5nV9lChoBmgJaA9DCMQj8fJ05XJAlIaUUpRoFUu+aBZHQLrgh0yxiXp1fZQoaAZoCWgPQwj7V1aa1GVzQJSGlFKUaBVLp2gWR0C64JjHsC1adX2UKGgGaAloD0MIO1ESEmkzM0CUhpRSlGgVS2VoFkdAuuCbp8neBXV9lChoBmgJaA9DCMOdCyO9FFhAlIaUUpRoFUuQaBZHQLrgnwVCXyB1fZQoaAZoCWgPQwgkmdU7nEdwQJSGlFKUaBVLpWgWR0C64Lzlgc94dX2UKGgGaAloD0MI/WfNj389cECUhpRSlGgVS5toFkdAuuDBuTA31nV9lChoBmgJaA9DCNEF9S0zqXFAlIaUUpRoFUuyaBZHQLrgx0q6OHZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f1559c4d88a2dde7623e441483f7a8ff6d66a67859a18a9250e08731f1be9bb
|
3 |
+
size 147090
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9260ef05e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9260ef0670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9260ef0700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9260ef0790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9260ef0820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9260ef08b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9260ef0940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9260ef09d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9260ef0a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9260ef0af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9260ef0b80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9260ee8e40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 10010624,
|
46 |
+
"_total_timesteps": 10000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670654714735816324,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbeLrykvw+7wlbvvKrvCj0cuxA8wWHMtwAAgD8AAIA/5vQmvoYhCT/tvnS7zLYyvx4plb4u7gE+AAAAAAAAAAAAu0i94Wy3usIUVDfiE0EyOYcaOjrIcrYAAIA/AACAP81WxTwKriC74H0lu+GviTyOyjU8GzBuvQAAgD8AAIA/JmmIPlVHPz9uyk6+LjAyv2P94D7i+Yy+AAAAAAAAAABmwge8j451uvuTrDGr7SAqTzVhO8lhN7MAAIA/AACAP829cb1jTCU/XlGDvWEuVL/JRcy9isyfvAAAAAAAAAAAeqMWvtE5qz+gBB2/6xbcvtN0Vb4JUL6+AAAAAAAAAADNnP28d0FFPiAmPj1fZuq+4zRtvStT77wAAAAAAAAAAADNPj1knKw/LfQrPvC+3L6GlUQ+VfJGPgAAAAAAAAAAzRxJu7aUXz248X+8F9/LvjaFi7yw3F69AAAAAAAAAAAAcyI9FFiFusbOnDQ3oqyukC7YOjbQbrMAAIA/AACAP80AX70WJKY/oYmQvg2KAb88zHW9Ne4IvgAAAAAAAAAAzey3O/styTuajV++hbhJvtXADr79MmM/AACAPwAAAACgYhG+WqLZPrcFND7iTCG/5d0dvvah4j0AAAAAAAAAAFP7Vr5JzhM/GCMTvSOzJb/u+d6+njBCPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILZj4o2hXc0CUhpRSlIwBbJRLq4wBdJRHQLrWzv7FbV11fZQoaAZoCWgPQwiWdmouNzA5QJSGlFKUaBVLWmgWR0C61vQSFoL5dX2UKGgGaAloD0MIdTv7ykOIc0CUhpRSlGgVS8loFkdAutb374zrNXV9lChoBmgJaA9DCOoGCrzT53BAlIaUUpRoFUupaBZHQLrW+ULUkOZ1fZQoaAZoCWgPQwh4l4v4jmtyQJSGlFKUaBVLvWgWR0C61v1o6CDmdX2UKGgGaAloD0MI5C1XP7brb0CUhpRSlGgVS6ZoFkdAutwQz41xbXV9lChoBmgJaA9DCJ0ui4kN5XNAlIaUUpRoFUvMaBZHQLrcE43FUAF1fZQoaAZoCWgPQwgsKuJ0kltzQJSGlFKUaBVL2WgWR0C63CZiNKh+dX2UKGgGaAloD0MIBd1e0pgpcUCUhpRSlGgVS7NoFkdAutw31wo9cXV9lChoBmgJaA9DCJ9Yp8q383NAlIaUUpRoFUvaaBZHQLrcOYzzmOl1fZQoaAZoCWgPQwhblq/L8MpyQJSGlFKUaBVLzWgWR0C63DsiwB5pdX2UKGgGaAloD0MIQInPnaC8c0CUhpRSlGgVS7JoFkdAutxDGS6lL3V9lChoBmgJaA9DCKIL6ltmRnJAlIaUUpRoFUuQaBZHQLrcRn3cpLF1fZQoaAZoCWgPQwgurBvvjhZwQJSGlFKUaBVLoWgWR0C63GMRL9MsdX2UKGgGaAloD0MI7rWg9wYgc0CUhpRSlGgVS9BoFkdAutxjHEMspXV9lChoBmgJaA9DCDoHz4TmgHBAlIaUUpRoFUubaBZHQLrcZokzGgl1fZQoaAZoCWgPQwjkh0ojpt5xQJSGlFKUaBVLw2gWR0C63GprgwXZdX2UKGgGaAloD0MI9x4uOe55cECUhpRSlGgVS59oFkdAutyPBzmwJXV9lChoBmgJaA9DCK3e4XYo0nFAlIaUUpRoFUuvaBZHQLrcoSuQp4N1fZQoaAZoCWgPQwg3cAfqVHdzQJSGlFKUaBVLxGgWR0C63LqnWJ7+dX2UKGgGaAloD0MIOSUgJmH+c0CUhpRSlGgVS81oFkdAutzQSh8IA3V9lChoBmgJaA9DCP9aXrnetXBAlIaUUpRoFUuvaBZHQLrc568xsVN1fZQoaAZoCWgPQwgk7rH0IdtyQJSGlFKUaBVLuGgWR0C63PFeBxxUdX2UKGgGaAloD0MIfeiC+lbscECUhpRSlGgVS6poFkdAut0F5E+gUXV9lChoBmgJaA9DCOhNRSoMcnJAlIaUUpRoFUuuaBZHQLrdCWN3np11fZQoaAZoCWgPQwjJOhxdpStxQJSGlFKUaBVLtGgWR0C63ROaa1CxdX2UKGgGaAloD0MIvOtsyH/Hc0CUhpRSlGgVS8hoFkdAut0Xa4+bE3V9lChoBmgJaA9DCAq/1M+bfXJAlIaUUpRoFUu4aBZHQLrdJVOsT391fZQoaAZoCWgPQwiZKELqNkpwQJSGlFKUaBVLn2gWR0C63SdDpkf+dX2UKGgGaAloD0MIkMGKU+1QcUCUhpRSlGgVS75oFkdAut0pE3KjjHV9lChoBmgJaA9DCNHJUuu9xXJAlIaUUpRoFUu4aBZHQLrdSqiGnGd1fZQoaAZoCWgPQwga3UHsTBd0QJSGlFKUaBVLxmgWR0C63VPoicG1dX2UKGgGaAloD0MIdVsiFxx3c0CUhpRSlGgVS8doFkdAut1YkTpPh3V9lChoBmgJaA9DCOZZSSs+q3BAlIaUUpRoFUu0aBZHQLrdbMJQcgh1fZQoaAZoCWgPQwi8zob8syhzQJSGlFKUaBVLsmgWR0C63ZEc81XOdX2UKGgGaAloD0MICCKLNPEockCUhpRSlGgVS7ZoFkdAut2qRbKRuHV9lChoBmgJaA9DCPNzQ1M23nFAlIaUUpRoFUuHaBZHQLrdscLSeAd1fZQoaAZoCWgPQwi3fCQlfZ9zQJSGlFKUaBVL5WgWR0C63bpfYzzmdX2UKGgGaAloD0MILzVCP9PIcECUhpRSlGgVS7NoFkdAut29WEK3NXV9lChoBmgJaA9DCKRskbTb4nFAlIaUUpRoFUukaBZHQLrdyAuIyj51fZQoaAZoCWgPQwgU61T5nqtxQJSGlFKUaBVLvGgWR0C63dDVQQ+VdX2UKGgGaAloD0MIwlCHFS6wcECUhpRSlGgVS59oFkdAut3iZa3ZwnV9lChoBmgJaA9DCAqA8QzaJnNAlIaUUpRoFUu4aBZHQLrd5GqxTsJ1fZQoaAZoCWgPQwjshJfglPFwQJSGlFKUaBVLq2gWR0C63fNlI3BIdX2UKGgGaAloD0MIb2b0o+GVc0CUhpRSlGgVS8VoFkdAut4SJk5IYnV9lChoBmgJaA9DCH9OQX52JnFAlIaUUpRoFUuuaBZHQLreHWHDaXd1fZQoaAZoCWgPQwjDZoAL8klyQJSGlFKUaBVL4WgWR0C63iXb7CSBdX2UKGgGaAloD0MIAOKuXoUPcUCUhpRSlGgVS65oFkdAut4sdQwbl3V9lChoBmgJaA9DCCDwwABCAHNAlIaUUpRoFUvGaBZHQLreRMnZ00Z1fZQoaAZoCWgPQwh2iH/YktFyQJSGlFKUaBVLvmgWR0C63lTEm6XjdX2UKGgGaAloD0MItMcL6bBVcUCUhpRSlGgVS6doFkdAut50/D+BH3V9lChoBmgJaA9DCLfT1ojgFnRAlIaUUpRoFUvIaBZHQLrehOryUcJ1fZQoaAZoCWgPQwhIFjCBW/dwQJSGlFKUaBVLq2gWR0C63oo3vQWvdX2UKGgGaAloD0MIIJkOnR4jcUCUhpRSlGgVS7NoFkdAut6L7wazeHV9lChoBmgJaA9DCM7DCUxnC3NAlIaUUpRoFUuPaBZHQLrekZBcAzZ1fZQoaAZoCWgPQwhcdR2qqShxQJSGlFKUaBVLoGgWR0C63pNe6ZpjdX2UKGgGaAloD0MIcRx4tdxvckCUhpRSlGgVS61oFkdAut6ZXRw6yXV9lChoBmgJaA9DCBhanZxhNHNAlIaUUpRoFUvLaBZHQLrer8dPtUp1fZQoaAZoCWgPQwhgPIOGvv1zQJSGlFKUaBVLoWgWR0C63rMdtEXtdX2UKGgGaAloD0MI9poeFBQyc0CUhpRSlGgVS7doFkdAut660svqT3V9lChoBmgJaA9DCP2GiQYpCExAlIaUUpRoFUtxaBZHQLre1cwg1WN1fZQoaAZoCWgPQwhYdVYLbC10QJSGlFKUaBVLsmgWR0C63uVO45LidX2UKGgGaAloD0MI6DI1Cd5/cUCUhpRSlGgVS7doFkdAut711W8yvnV9lChoBmgJaA9DCNEF9S1zOnJAlIaUUpRoFUvLaBZHQLrfFWHk92Z1fZQoaAZoCWgPQwjsTnee+LxyQJSGlFKUaBVLtWgWR0C63xmsaKk3dX2UKGgGaAloD0MIeGNBYdArc0CUhpRSlGgVS9doFkdAut8sjKPn0XV9lChoBmgJaA9DCDvGFReHHHFAlIaUUpRoFUuraBZHQLrfQlvqC6J1fZQoaAZoCWgPQwimKJfGr3FwQJSGlFKUaBVLr2gWR0C631a9f1HwdX2UKGgGaAloD0MItyqJ7MMRc0CUhpRSlGgVS51oFkdAut9V4oqkM3V9lChoBmgJaA9DCBKhEWwcLHFAlIaUUpRoFUupaBZHQLrfW6dDpkh1fZQoaAZoCWgPQwgKEAUz5hdxQJSGlFKUaBVLsGgWR0C63103XI2gdX2UKGgGaAloD0MITDPd62RnckCUhpRSlGgVS7BoFkdAut9fFGXoknV9lChoBmgJaA9DCGmqJ/NP9XFAlIaUUpRoFUuxaBZHQLrfhqmj0th1fZQoaAZoCWgPQwiwHvetFhVxQJSGlFKUaBVLqmgWR0C634pz1bqydX2UKGgGaAloD0MI3e7lPnnKckCUhpRSlGgVS99oFkdAut+e9qUNa3V9lChoBmgJaA9DCBjpRe3+PnFAlIaUUpRoFUuiaBZHQLrfqvOQhfV1fZQoaAZoCWgPQwjb/L/qCCt0QJSGlFKUaBVL0GgWR0C637B2r4nGdX2UKGgGaAloD0MIN4jWijZIckCUhpRSlGgVS8doFkdAut/K03Ov+3V9lChoBmgJaA9DCJHWGHTCNHNAlIaUUpRoFUu5aBZHQLrf1xFAmiR1fZQoaAZoCWgPQwi7YkZ4e8FxQJSGlFKUaBVLlWgWR0C63/fCVKPGdX2UKGgGaAloD0MIXwzlRPuKc0CUhpRSlGgVS7doFkdAut/5rgwXZXV9lChoBmgJaA9DCBJnRdQEDHJAlIaUUpRoFUu/aBZHQLrf/zbeuV51fZQoaAZoCWgPQwjKFkm7ERlyQJSGlFKUaBVLkGgWR0C64AVmjCYUdX2UKGgGaAloD0MIE0ceiCxackCUhpRSlGgVS7toFkdAuuAN/I8yOHV9lChoBmgJaA9DCBcRxeQNE1JAlIaUUpRoFUtzaBZHQLrgFWP91lp1fZQoaAZoCWgPQwiyLQPOUm1yQJSGlFKUaBVLr2gWR0C64Cfa11GLdX2UKGgGaAloD0MIL6cExCT7cECUhpRSlGgVS69oFkdAuuAtyHVPN3V9lChoBmgJaA9DCLCMDd2sQHJAlIaUUpRoFUuwaBZHQLrgMZ9NN8F1fZQoaAZoCWgPQwjCps6jomFyQJSGlFKUaBVLtmgWR0C64DaeCkGidX2UKGgGaAloD0MI3J+LhoxKcUCUhpRSlGgVS6doFkdAuuBK8tf5UXV9lChoBmgJaA9DCJNxjGSPm3FAlIaUUpRoFUuhaBZHQLrgWQiA2AJ1fZQoaAZoCWgPQwji5elcEfVyQJSGlFKUaBVLpWgWR0C64G3Ty8SPdX2UKGgGaAloD0MIw9fXutSGb0CUhpRSlGgVS6BoFkdAuuCCk30f5nV9lChoBmgJaA9DCMQj8fJ05XJAlIaUUpRoFUu+aBZHQLrgh0yxiXp1fZQoaAZoCWgPQwj7V1aa1GVzQJSGlFKUaBVLp2gWR0C64JjHsC1adX2UKGgGaAloD0MIO1ESEmkzM0CUhpRSlGgVS2VoFkdAuuCbp8neBXV9lChoBmgJaA9DCMOdCyO9FFhAlIaUUpRoFUuQaBZHQLrgnwVCXyB1fZQoaAZoCWgPQwgkmdU7nEdwQJSGlFKUaBVLpWgWR0C64Lzlgc94dX2UKGgGaAloD0MI/WfNj389cECUhpRSlGgVS5toFkdAuuDBuTA31nV9lChoBmgJaA9DCNEF9S0zqXFAlIaUUpRoFUuyaBZHQLrgx0q6OHZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 2444,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccba57c7733ad77dba133aedfd56fa25e78b777ee2cac32ccbe2093331260fa1
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78bb440e94dc8263b01b2f1e1509fe53d7067716f21283367b1095195709a907
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 285.30103593499416, "std_reward": 14.580222395699879, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T08:40:22.467598"}
|