ShreyasM commited on
Commit
0be1007
·
1 Parent(s): 99f73d0

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - HopperBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: HopperBulletEnv-v0
16
+ type: HopperBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 517.15 +/- 315.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **HopperBulletEnv-v0**
25
+ This is a trained model of a **PPO** agent playing **HopperBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47ecc73430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47ecc734c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47ecc73550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47ecc735e0>", "_build": "<function ActorCriticPolicy._build at 0x7f47ecc73670>", "forward": "<function ActorCriticPolicy.forward at 0x7f47ecc73700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f47ecc73790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47ecc73820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f47ecc738b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47ecc73940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47ecc739d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47ecc73a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f47ecc748c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV5QEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLD4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWPAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLD4WUjAFDlHSUUpSMBGhpZ2iUaBIoljwAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSw+FlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWDwAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLD4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsPhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [15], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 155648, "_total_timesteps": 155000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679447145015280491, "learning_rate": 0.001, "tensorboard_log": "value_loss", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVZQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbwAAAAAAAAAEyWEz8AAAAAdibSNbIklL4AAAAAqNbTPgAAAAANLh0+CfI9P8PyTz4lifo+n85kPg2ger/sR9S9T+7yPl+MEz8AAAAAdibSNeM9pb4AAAAAOD3TPgAAAAAonhw+cRk+P/iOUD6sjfo+tOhkPuDver9NNt69T+7yPhb00D4AAAAAdibSNWYTvr4AAAAA6xjPPgAAAIAJIsQ+S6o9P7g0UD7/jIM/CYpyPkFmz78xgfu9T+7yPl46pT4AAAAAdibSNcTkrr4AAAAA0+/OPgAAAIB+ArA+jWY9PwMrUT70po4/8YB1PryD5b8L/Pa9T+7yPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsPhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVZQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbwAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWX52PwAAAABZL4Y/AAAAAKRd8LwAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx/eGPwAAAACGiXw/AAAAAItI0b0AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmPVuPwAAAAAMoYE/AAAAAE74B70AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1EeEPwAAAAAAsHA/AAAAAJWmgD0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsPhpSMAUOUdJRSlC4="}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004180645161290242, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF6+S1Vo6CGMAWyUS3qMAXSUR0Ca2UdHUc4pdX2UKGgGR0Bg7mz2OAAiaAdLiGgIR0Ca2ss/6frbdX2UKGgGR0B0bKlCTlkpaAdNgAFoCEdAmtvSQ9zOo3V9lChoBkdAVbOBRQ79ymgHS0toCEdAmtvZ6po9LnV9lChoBkdAQH5NVR1ox2gHSxFoCEdAmtwPHggow3V9lChoBkdAXQD6TGHYYmgHS2loCEdAmt1We18b73V9lChoBkdAXcMINVinYWgHS2loCEdAmt2L2criEXV9lChoBkdAPoluR9w3pGgHSw9oCEdAmt3BgmZ3LXV9lChoBkdAf2Fxe9i+c2gHTWECaAhHQJreBhCtzS11fZQoaAZHQFWDUVBUrCpoB0tNaAhHQJrea/fwZwZ1fZQoaAZHQFdpWtlqagFoB0tbaAhHQJrfDTkQwsZ1fZQoaAZHQFWK3NLUTctoB0tLaAhHQJrfGaZx7zF1fZQoaAZHQFVZuh9LHuJoB0tQaAhHQJrfj6yjYZl1fZQoaAZHQENtEgntv4xoB0sUaAhHQJrf2Rs/IKd1fZQoaAZHQFX6xR2r4nFoB0tNaAhHQJrgIvRJEpl1fZQoaAZHQFTANTtLL6loB0tJaAhHQJrg4crAgxJ1fZQoaAZHQFirJx//echoB0tbaAhHQJrhcJgLJCB1fZQoaAZHQFXaggow22poB0tSaAhHQJriDxlQMx51fZQoaAZHQFeMBK+SKWNoB0tVaAhHQJrir3fyf+V1fZQoaAZHQFcySjQAuI1oB0tWaAhHQJrjVWEK3NN1fZQoaAZHQILSI13t8eFoB03hAmgIR0Ca49gZ0jkddX2UKGgGR0BYC7Dl5nlGaAdLU2gIR0Ca4+7AtWdVdX2UKGgGR0BWv9hRZU1iaAdLUmgIR0Ca5I1RceKbdX2UKGgGR0BBbdzfaYeDaAdLE2gIR0Ca5Nb212JSdX2UKGgGR0BW0fc32mHhaAdLT2gIR0Ca5QBClabGdX2UKGgGR0BVleyNXHR1aAdLTWgIR0Ca5Q8/lhgFdX2UKGgGR0B3bgjIJZ4faAdNvwFoCEdAmuWbqY7aI3V9lChoBkdAWZcEhaC+UWgHS2JoCEdAmuaCdJ8OTnV9lChoBkdAXGZVU+9rXWgHS2xoCEdAmucveLvTgHV9lChoBkdAYtbA0Kqn32gHS51oCEdAmudNZid8RnV9lChoBkdAVkDrQgLZz2gHS1ZoCEdAmufD3VTaTXV9lChoBkdAVffIU8FINGgHS09oCEdAmuhURBeHBXV9lChoBkdAWQp/c32mHmgHS2BoCEdAmuiyPMjeK3V9lChoBkdAbO5DgIhQnGgHTQ0BaAhHQJroxf7aZhN1fZQoaAZHQFn/2Bas6q9oB0tiaAhHQJrpMWFev6l1fZQoaAZHQD6Hafzz3AVoB0sPaAhHQJrpaHCXQdF1fZQoaAZHQFcXokiUxEhoB0tbaAhHQJrpqdiDujR1fZQoaAZHQFV4ICEHt4RoB0tSaAhHQJrp5YZEUj91fZQoaAZHQFZjRQaaTfRoB0tOaAhHQJrp6ZeAuqZ1fZQoaAZHQEKaMsH0K7ZoB0sTaAhHQJrqLEit7rt1fZQoaAZHQFrdRlpXZGtoB0tnaAhHQJrrJY7q6e51fZQoaAZHQFgLHkLhJiBoB0taaAhHQJrrNy2hIvt1fZQoaAZHQFWIM36yjYZoB0tPaAhHQJrrUWfseGR1fZQoaAZHQGJJ2kBS1mdoB0uLaAhHQJrrbFGXokl1fZQoaAZHQFZy8oQWepZoB0tOaAhHQJrsTxc3VCp1fZQoaAZHQFRrsabWmP5oB0tNaAhHQJrsWnbZezF1fZQoaAZHQDvPHvMKTjhoB0sOaAhHQJrsju5SWJJ1fZQoaAZHQFcQ4tHxz7xoB0tQaAhHQJrsmxqwhW51fZQoaAZHQGYbPGhmGudoB0u7aAhHQJruDWPLgXN1fZQoaAZHQF2/q59Vmz1oB0tmaAhHQJruFJ04iot1fZQoaAZHQGMtr5ZbILhoB0ucaAhHQJru0IVuaWp1fZQoaAZHQFl9ZpztCzFoB0tjaAhHQJrvhqk/KQt1fZQoaAZHQGD5izC1qnFoB0uHaAhHQJrwyMdcSoR1fZQoaAZHQFlcsyzolldoB0tiaAhHQJrw81Muez51fZQoaAZHQHQf2cnVoYhoB02BAWgIR0Ca8egvUSZjdX2UKGgGR0BVV8IqslsxaAdLTWgIR0Ca8g8xsVL0dX2UKGgGR0BAFv/R3NcGaAdLEGgIR0Ca8kh6By0bdX2UKGgGR0BfhWNBF/hEaAdLcmgIR0Ca8m8RL9MsdX2UKGgGR0BwnfqFAVwhaAdNMQFoCEdAmvJ6qfe1r3V9lChoBkdAVZMLVnVXm2gHS01oCEdAmwvaTOgQH3V9lChoBkdAWNS9qUNayWgHS11oCEdAmwx4Chew93V9lChoBkdAZ3ae2d/ax2gHTSoBaAhHQJsQJGe+VTt1fZQoaAZHQIgktWIXTE1oB03oA2gIR0CbGa4VARkFdX2UKGgGR0CIEqNgBtDVaAdN6ANoCEdAmxm5+H8CP3V9lChoBkdAiCvp4B3iaWgHTegDaAhHQJsa2kYXO4Z1fZQoaAZHQIgyaeTV2A5oB03oA2gIR0CbHn6/IsAedX2UKGgGR0Bv2JZEDyOJaAdNgAFoCEdAmyBYg7o0RHV9lChoBkdAgmF9/BnBcmgHTdACaAhHQJskGgezUqh1fZQoaAZHQIgiV+kP+XJoB03oA2gIR0CbKBMefZmJdX2UKGgGR0CH/IXcgyM2aAdN6ANoCEdAm0VFOTJQtXV9lChoBkdAiAI2zfJmumgHTegDaAhHQJtHE+W4Vh11fZQoaAZHQIfglGNJe3RoB03oA2gIR0CbSrlWwNb1dX2UKGgGR0BcZPWpZOi4aAdLy2gIR0CbTZilBQendX2UKGgGR0CHuviuMdcTaAdN6ANoCEdAm06ooNNJv3V9lChoBkdAh3mMhHLA6GgHTegDaAhHQJtTjiIcinp1fZQoaAZHQIeySeVcD8toB03oA2gIR0CbVWvK2a2GdX2UKGgGR0CHiHtF8XvZaAdN6ANoCEdAm1xhJEpiJHV9lChoBkdAh82st03fh2gHTegDaAhHQJtdmDJ2dNF1fZQoaAZHQFnEJNCZ4OdoB0u7aAhHQJtfWYG+sYF1fZQoaAZHQFR6MdtEXtVoB0uWaAhHQJt4BP420iR1fZQoaAZHQE8mh5gPVd5oB0t0aAhHQJt5rHEMspZ1fZQoaAZHQIdWbU/fO2RoB03oA2gIR0CberYigTRIdX2UKGgGR0CHUWKvV3EAaAdN6ANoCEdAm3yXK0UoKHV9lChoBkdAhbzwGnn+ymgHTdoDaAhHQJuF9OYYzi11fZQoaAZHQIbnoV9F4LVoB03oA2gIR0CbiHK508vFdX2UKGgGR0CFmv06HTJAaAdN1gNoCEdAm4k62BreqXV9lChoBkdAhtvqIrOJL2gHTegDaAhHQJuLcIUrTYx1fZQoaAZHQIYoqjDbah9oB03oA2gIR0CblPmseXAudX2UKGgGR0BLoT4cm0E6aAdLYmgIR0CbrwmF8G9pdX2UKGgGR0CEP9tk4FRpaAdNfwNoCEdAm69Rl18stnV9lChoBkdAgbu0HIIWxmgHTQ8DaAhHQJuv41dgOSZ1fZQoaAZHQIbObzwtrbhoB03oA2gIR0CbsB9nbqQjdX2UKGgGR0B22t+CsfaIaAdNAAJoCEdAm7aExASnL3V9lChoBkdARGJrvb48EGgHS0poCEdAm7eZX2dupHV9lChoBkdAedTefZmI02gHTT4CaAhHQJu4L+glF+d1fZQoaAZHQIbh+Qr+YMRoB03oA2gIR0CbvdGpMpPRdX2UKGgGR0CG36lDWsijaAdN6ANoCEdAm76WFFlTWHV9lChoBkdAeBK433pOe2gHTRYCaAhHQJu/Uz3yqdZ1fZQoaAZHQHom6zJIUahoB01FAmgIR0Cbxp9BKL88dX2UKGgGR0CGzzE8aGYbaAdN6ANoCEdAm8cC53C9AXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 190, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEdALgAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-HopperBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adfa9a9676210e73bfa5465a9af18a1ef6929a06d6cfe6ee704491c0ed680600
3
+ size 158006
ppo-HopperBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-HopperBulletEnv-v0/data ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47ecc73430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47ecc734c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47ecc73550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47ecc735e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f47ecc73670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f47ecc73700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f47ecc73790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47ecc73820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f47ecc738b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47ecc73940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47ecc739d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47ecc73a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f47ecc748c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWV5QEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLD4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWPAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLD4WUjAFDlHSUUpSMBGhpZ2iUaBIoljwAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSw+FlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWDwAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLD4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsPhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 15
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False False False False False\n False False False]",
34
+ "bounded_above": "[False False False False False False False False False False False False\n False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 3
43
+ ],
44
+ "low": "[-1. -1. -1.]",
45
+ "high": "[1. 1. 1.]",
46
+ "bounded_below": "[ True True True]",
47
+ "bounded_above": "[ True True True]",
48
+ "_np_random": null
49
+ },
50
+ "n_envs": 4,
51
+ "num_timesteps": 155648,
52
+ "_total_timesteps": 155000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": null,
55
+ "action_noise": null,
56
+ "start_time": 1679447145015280491,
57
+ "learning_rate": 0.001,
58
+ "tensorboard_log": "value_loss",
59
+ "lr_schedule": {
60
+ ":type:": "<class 'function'>",
61
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
62
+ },
63
+ "_last_obs": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVZQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbwAAAAAAAAAEyWEz8AAAAAdibSNbIklL4AAAAAqNbTPgAAAAANLh0+CfI9P8PyTz4lifo+n85kPg2ger/sR9S9T+7yPl+MEz8AAAAAdibSNeM9pb4AAAAAOD3TPgAAAAAonhw+cRk+P/iOUD6sjfo+tOhkPuDver9NNt69T+7yPhb00D4AAAAAdibSNWYTvr4AAAAA6xjPPgAAAIAJIsQ+S6o9P7g0UD7/jIM/CYpyPkFmz78xgfu9T+7yPl46pT4AAAAAdibSNcTkrr4AAAAA0+/OPgAAAIB+ArA+jWY9PwMrUT70po4/8YB1PryD5b8L/Pa9T+7yPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsPhpSMAUOUdJRSlC4="
66
+ },
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
70
+ },
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVZQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbwAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWX52PwAAAABZL4Y/AAAAAKRd8LwAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx/eGPwAAAACGiXw/AAAAAItI0b0AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmPVuPwAAAAAMoYE/AAAAAE74B70AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1EeEPwAAAAAAsHA/AAAAAJWmgD0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsPhpSMAUOUdJRSlC4="
74
+ },
75
+ "_episode_num": 0,
76
+ "use_sde": false,
77
+ "sde_sample_freq": -1,
78
+ "_current_progress_remaining": -0.004180645161290242,
79
+ "ep_info_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVCAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF6+S1Vo6CGMAWyUS3qMAXSUR0Ca2UdHUc4pdX2UKGgGR0Bg7mz2OAAiaAdLiGgIR0Ca2ss/6frbdX2UKGgGR0B0bKlCTlkpaAdNgAFoCEdAmtvSQ9zOo3V9lChoBkdAVbOBRQ79ymgHS0toCEdAmtvZ6po9LnV9lChoBkdAQH5NVR1ox2gHSxFoCEdAmtwPHggow3V9lChoBkdAXQD6TGHYYmgHS2loCEdAmt1We18b73V9lChoBkdAXcMINVinYWgHS2loCEdAmt2L2criEXV9lChoBkdAPoluR9w3pGgHSw9oCEdAmt3BgmZ3LXV9lChoBkdAf2Fxe9i+c2gHTWECaAhHQJreBhCtzS11fZQoaAZHQFWDUVBUrCpoB0tNaAhHQJrea/fwZwZ1fZQoaAZHQFdpWtlqagFoB0tbaAhHQJrfDTkQwsZ1fZQoaAZHQFWK3NLUTctoB0tLaAhHQJrfGaZx7zF1fZQoaAZHQFVZuh9LHuJoB0tQaAhHQJrfj6yjYZl1fZQoaAZHQENtEgntv4xoB0sUaAhHQJrf2Rs/IKd1fZQoaAZHQFX6xR2r4nFoB0tNaAhHQJrgIvRJEpl1fZQoaAZHQFTANTtLL6loB0tJaAhHQJrg4crAgxJ1fZQoaAZHQFirJx//echoB0tbaAhHQJrhcJgLJCB1fZQoaAZHQFXaggow22poB0tSaAhHQJriDxlQMx51fZQoaAZHQFeMBK+SKWNoB0tVaAhHQJrir3fyf+V1fZQoaAZHQFcySjQAuI1oB0tWaAhHQJrjVWEK3NN1fZQoaAZHQILSI13t8eFoB03hAmgIR0Ca49gZ0jkddX2UKGgGR0BYC7Dl5nlGaAdLU2gIR0Ca4+7AtWdVdX2UKGgGR0BWv9hRZU1iaAdLUmgIR0Ca5I1RceKbdX2UKGgGR0BBbdzfaYeDaAdLE2gIR0Ca5Nb212JSdX2UKGgGR0BW0fc32mHhaAdLT2gIR0Ca5QBClabGdX2UKGgGR0BVleyNXHR1aAdLTWgIR0Ca5Q8/lhgFdX2UKGgGR0B3bgjIJZ4faAdNvwFoCEdAmuWbqY7aI3V9lChoBkdAWZcEhaC+UWgHS2JoCEdAmuaCdJ8OTnV9lChoBkdAXGZVU+9rXWgHS2xoCEdAmucveLvTgHV9lChoBkdAYtbA0Kqn32gHS51oCEdAmudNZid8RnV9lChoBkdAVkDrQgLZz2gHS1ZoCEdAmufD3VTaTXV9lChoBkdAVffIU8FINGgHS09oCEdAmuhURBeHBXV9lChoBkdAWQp/c32mHmgHS2BoCEdAmuiyPMjeK3V9lChoBkdAbO5DgIhQnGgHTQ0BaAhHQJroxf7aZhN1fZQoaAZHQFn/2Bas6q9oB0tiaAhHQJrpMWFev6l1fZQoaAZHQD6Hafzz3AVoB0sPaAhHQJrpaHCXQdF1fZQoaAZHQFcXokiUxEhoB0tbaAhHQJrpqdiDujR1fZQoaAZHQFV4ICEHt4RoB0tSaAhHQJrp5YZEUj91fZQoaAZHQFZjRQaaTfRoB0tOaAhHQJrp6ZeAuqZ1fZQoaAZHQEKaMsH0K7ZoB0sTaAhHQJrqLEit7rt1fZQoaAZHQFrdRlpXZGtoB0tnaAhHQJrrJY7q6e51fZQoaAZHQFgLHkLhJiBoB0taaAhHQJrrNy2hIvt1fZQoaAZHQFWIM36yjYZoB0tPaAhHQJrrUWfseGR1fZQoaAZHQGJJ2kBS1mdoB0uLaAhHQJrrbFGXokl1fZQoaAZHQFZy8oQWepZoB0tOaAhHQJrsTxc3VCp1fZQoaAZHQFRrsabWmP5oB0tNaAhHQJrsWnbZezF1fZQoaAZHQDvPHvMKTjhoB0sOaAhHQJrsju5SWJJ1fZQoaAZHQFcQ4tHxz7xoB0tQaAhHQJrsmxqwhW51fZQoaAZHQGYbPGhmGudoB0u7aAhHQJruDWPLgXN1fZQoaAZHQF2/q59Vmz1oB0tmaAhHQJruFJ04iot1fZQoaAZHQGMtr5ZbILhoB0ucaAhHQJru0IVuaWp1fZQoaAZHQFl9ZpztCzFoB0tjaAhHQJrvhqk/KQt1fZQoaAZHQGD5izC1qnFoB0uHaAhHQJrwyMdcSoR1fZQoaAZHQFlcsyzolldoB0tiaAhHQJrw81Muez51fZQoaAZHQHQf2cnVoYhoB02BAWgIR0Ca8egvUSZjdX2UKGgGR0BVV8IqslsxaAdLTWgIR0Ca8g8xsVL0dX2UKGgGR0BAFv/R3NcGaAdLEGgIR0Ca8kh6By0bdX2UKGgGR0BfhWNBF/hEaAdLcmgIR0Ca8m8RL9MsdX2UKGgGR0BwnfqFAVwhaAdNMQFoCEdAmvJ6qfe1r3V9lChoBkdAVZMLVnVXm2gHS01oCEdAmwvaTOgQH3V9lChoBkdAWNS9qUNayWgHS11oCEdAmwx4Chew93V9lChoBkdAZ3ae2d/ax2gHTSoBaAhHQJsQJGe+VTt1fZQoaAZHQIgktWIXTE1oB03oA2gIR0CbGa4VARkFdX2UKGgGR0CIEqNgBtDVaAdN6ANoCEdAmxm5+H8CP3V9lChoBkdAiCvp4B3iaWgHTegDaAhHQJsa2kYXO4Z1fZQoaAZHQIgyaeTV2A5oB03oA2gIR0CbHn6/IsAedX2UKGgGR0Bv2JZEDyOJaAdNgAFoCEdAmyBYg7o0RHV9lChoBkdAgmF9/BnBcmgHTdACaAhHQJskGgezUqh1fZQoaAZHQIgiV+kP+XJoB03oA2gIR0CbKBMefZmJdX2UKGgGR0CH/IXcgyM2aAdN6ANoCEdAm0VFOTJQtXV9lChoBkdAiAI2zfJmumgHTegDaAhHQJtHE+W4Vh11fZQoaAZHQIfglGNJe3RoB03oA2gIR0CbSrlWwNb1dX2UKGgGR0BcZPWpZOi4aAdLy2gIR0CbTZilBQendX2UKGgGR0CHuviuMdcTaAdN6ANoCEdAm06ooNNJv3V9lChoBkdAh3mMhHLA6GgHTegDaAhHQJtTjiIcinp1fZQoaAZHQIeySeVcD8toB03oA2gIR0CbVWvK2a2GdX2UKGgGR0CHiHtF8XvZaAdN6ANoCEdAm1xhJEpiJHV9lChoBkdAh82st03fh2gHTegDaAhHQJtdmDJ2dNF1fZQoaAZHQFnEJNCZ4OdoB0u7aAhHQJtfWYG+sYF1fZQoaAZHQFR6MdtEXtVoB0uWaAhHQJt4BP420iR1fZQoaAZHQE8mh5gPVd5oB0t0aAhHQJt5rHEMspZ1fZQoaAZHQIdWbU/fO2RoB03oA2gIR0CberYigTRIdX2UKGgGR0CHUWKvV3EAaAdN6ANoCEdAm3yXK0UoKHV9lChoBkdAhbzwGnn+ymgHTdoDaAhHQJuF9OYYzi11fZQoaAZHQIbnoV9F4LVoB03oA2gIR0CbiHK508vFdX2UKGgGR0CFmv06HTJAaAdN1gNoCEdAm4k62BreqXV9lChoBkdAhtvqIrOJL2gHTegDaAhHQJuLcIUrTYx1fZQoaAZHQIYoqjDbah9oB03oA2gIR0CblPmseXAudX2UKGgGR0BLoT4cm0E6aAdLYmgIR0CbrwmF8G9pdX2UKGgGR0CEP9tk4FRpaAdNfwNoCEdAm69Rl18stnV9lChoBkdAgbu0HIIWxmgHTQ8DaAhHQJuv41dgOSZ1fZQoaAZHQIbObzwtrbhoB03oA2gIR0CbsB9nbqQjdX2UKGgGR0B22t+CsfaIaAdNAAJoCEdAm7aExASnL3V9lChoBkdARGJrvb48EGgHS0poCEdAm7eZX2dupHV9lChoBkdAedTefZmI02gHTT4CaAhHQJu4L+glF+d1fZQoaAZHQIbh+Qr+YMRoB03oA2gIR0CbvdGpMpPRdX2UKGgGR0CG36lDWsijaAdN6ANoCEdAm76WFFlTWHV9lChoBkdAeBK433pOe2gHTRYCaAhHQJu/Uz3yqdZ1fZQoaAZHQHom6zJIUahoB01FAmgIR0Cbxp9BKL88dX2UKGgGR0CGzzE8aGYbaAdN6ANoCEdAm8cC53C9AXVlLg=="
82
+ },
83
+ "ep_success_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
86
+ },
87
+ "_n_updates": 190,
88
+ "n_steps": 2048,
89
+ "gamma": 0.99,
90
+ "gae_lambda": 0.95,
91
+ "ent_coef": 0.0,
92
+ "vf_coef": 0.5,
93
+ "max_grad_norm": 0.5,
94
+ "batch_size": 64,
95
+ "n_epochs": 10,
96
+ "clip_range": {
97
+ ":type:": "<class 'function'>",
98
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEdALgAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
99
+ },
100
+ "clip_range_vf": null,
101
+ "normalize_advantage": true,
102
+ "target_kl": null
103
+ }
ppo-HopperBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97b4ab89620c196f2865a9167724bb64294f967f3fbff532024a3ae5dfe610df
3
+ size 95472
ppo-HopperBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d1713cbc683c87a905fdf33e85eeada1179ba9024d498bdf2d9f61c2f24e365
3
+ size 47038
ppo-HopperBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-HopperBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (128 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 517.1518606934696, "std_reward": 315.89641667319506, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-22T01:10:28.737799"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b3df7e65dc370c9a26b1d25c06587876d52e2ea04282a9679ec9a1e2d34bc1
3
+ size 1696