File size: 2,525 Bytes
0f3328a
 
2adbf2a
 
 
 
 
0f3328a
2adbf2a
 
 
c7f9b67
2adbf2a
 
 
c7f9b67
 
 
 
 
 
 
2adbf2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7f9b67
2adbf2a
 
 
 
 
 
 
 
 
c7f9b67
2adbf2a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: mit
language:
- en
pipeline_tag: text-to-image
tags:
- text-to-image
---

# Latent Consistency Models

Official Repository of the paper: *[Latent Consistency Models](https://arxiv.org/abs/2310.04378)*.

Project Page: https://latent-consistency-models.github.io

## Try our Hugging Face demos: 
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model)

## Model Descriptions:
Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine-tune of [Stable-Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) with only 4,000 training iterations (~32 A100 GPU Hours). 

## Generation Results:

<p align="center">
    <img src="teaser.png">
</p>

By distilling classifier-free guidance into the model's input, LCM can generate high-quality images in very short inference time. We compare the inference time at the setting of 768 x 768 resolution, CFG scale w=8, batchsize=4, using a A800 GPU. 

<p align="center">
    <img src="speed_fid.png">
</p>

## Usage

You can try out Latency Consistency Models directly on:
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model)

To run the model yourself, you can leverage the 🧨 Diffusers library:
1. Install the library:
```
pip install diffusers transformers accelerate
```

2. Run the model:
```py
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)

prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"

# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4 

images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```

## BibTeX

```bibtex
@misc{luo2023latent,
      title={Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference}, 
      author={Simian Luo and Yiqin Tan and Longbo Huang and Jian Li and Hang Zhao},
      year={2023},
      eprint={2310.04378},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```