Skywork-13B-Math-8bits / skywork_13b_sft.sh
liang.zhao
update model and config
67b506b
raw
history blame
3.31 kB
set -x
export WANDB_API_KEY=${WANDB_API_KEY:-YOUR_WANDB_API_KEY}
export WANDB_ENTITY=${WANDB_ENTITY:-YOUR_WANDB_ENTITY}
export WANDB_PROJECT=${WANDB_PROJECT:-YOUR_WANDB_PROJECT}
GPUS_PER_NODE=8
NODE_RANK=$([ -z "$RANK" ] && echo -n 0 || echo -n $RANK)
NNODES=$([ -z "$WORLD_SIZE" ] && echo -n 1 || echo -n $WORLD_SIZE)
DEBUG="false"
USE_LORA="false"
TASK_TYPE="sft"
MAX_STEP=1000
LR=1e-4
MAX_LENGTH=4096
GLOBAL_BATCH_SIZE=32 # 8 * 4
MICRO_BATCH_SIZE=1
SAVE_STEP=500
EVAL_STEP=500
GRAD_ACC=$((${GLOBAL_BATCH_SIZE} / (${GPUS_PER_NODE} * $NNODES * ${MICRO_BATCH_SIZE}) ))
FLAG=Skywork-13B-Base-sft-peaklr${LR}-steps${MAX_STEP}-gbs${GLOBAL_BATCH_SIZE}
ROOT_PATH=${ROOT_PATH:-/data/user/your_name}
MODEL_PATH=${MODEL_PATH:-SKYWORK_13B_BASE_MODEL_PATH}
SFT_DATA_DIR=${SFT_DATA_DIR:-"YOUR_DATA_DIR"}
DATA_CACHE_DIR=${DATA_CACHE_DIR:-"YOUR_DATA_CACHE_DIR"}
OUTPUT_DIR=$ROOT_PATH/run_output/skywork-13b-sft-trainer/$FLAG
LOAD_MODEL_PATH=$([ -z "$MODEL_PATH" ] && echo -n "$OUTPUT_DIR" || echo -n "$MODEL_PATH")
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --master_port 29501"
if [[ $NNODES -gt 1 ]]; then
export NCCL_IB_HCA=mlx5
export NCCL_IB_TC=136
export NCCL_IB_SL=5
export NCCL_IB_GID_INDEX=3
export NCCL_IB_TIMEOUT=22
export NCCL_SOCKET_IFNAME=bond0
export NCCL_DEBUG=INFO
NODE_RANK=$RANK
if [ "$MASTER_ADDR" == "localhost" ] ; then $MASTER_ADDR=`hostname`; fi
echo $MASTER_ADDR
echo $MASTER_PORT
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
fi
if [ "$DEBUG" = "true" ]; then
EVAL_STEP=5
GLOBAL_BATCH_SIZE=8
GRAD_ACC=1
fi
DS_CONFIG=${DS_CONFIG:-train/ds_config/zero3_offload.json}
LOG_ARGS="
--logging_steps 1 \
--logging_dir tensorboard/$FLAG \
--logging_strategy steps \
--logging_first_step True \
--report_to wandb \
--run_name $FLAG
"
OUTPUT_ARGS="
--save_strategy steps \
--save_total_limit 500 \
--save_steps $SAVE_STEP \
--output_dir $OUTPUT_DIR \
--overwrite_output_dir
"
TRAIN_ARGS="
--task_type $TASK_TYPE \
--do_train \
--max_seq_length $MAX_LENGTH \
--max_steps $MAX_STEP \
--lr_scheduler_type constant_with_warmup \
--learning_rate $LR \
--weight_decay 0.1 \
--warmup_steps 20 \
--adam_beta1 0.9 \
--adam_beta2 0.95 \
--gradient_accumulation_steps $GRAD_ACC \
--per_device_train_batch_size $MICRO_BATCH_SIZE
"
EVAL_ARGS="
--do_eval \
--evaluation_strategy steps \
--eval_steps $EVAL_STEP \
--per_device_eval_batch_size 1
"
INPUT_ARGS="
--model_name_or_path $LOAD_MODEL_PATH \
--tokenizer_name_or_path $LOAD_MODEL_PATH \
--sft_dataset_dir $SFT_DATA_DIR \
--data_cache_dir $DATA_CACHE_DIR
"
EXTRA_ARGS="
--seed 1234 \
--deepspeed $DS_CONFIG \
--gradient_checkpointing \
--ddp_find_unused_parameters False \
--preprocessing_num_workers 12 \
--ddp_timeout 30000 \
--torch_dtype bfloat16 \
--bf16 \
--load_in_kbits 16
"
mkdir -p logs/$FLAG || True
torchrun $DISTRIBUTED_ARGS train/train.py \
$LOG_ARGS \
$OUTPUT_ARGS \
$TRAIN_ARGS \
$EVAL_ARGS \
$INPUT_ARGS \
$EXTRA_ARGS 2>&1 | tee -a logs/$FLAG/$RANK.log