Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 202.32 +/- 21.75
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f604cb08290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f604cb08320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f604cb083b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f604cb08440>", "_build": "<function ActorCriticPolicy._build at 0x7f604cb084d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f604cb08560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f604cb085f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f604cb08680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f604cb08710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f604cb087a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f604cb08830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f604cb527e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652165466.5225573, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2EHjvHXRY/cqh9veldzr2YNag8DMGevQAAAAAAAAAAwImSPR+Fn7lsP5C68ey3NY+Spbsydqo5AACAPwAAgD9mCQs9PQoCuVrc8rorOVi1mE+/u7fUDjoAAIA/AACAPyaGib1PxHy8zpihPTD3jL2v4DQ8H2YXPQAAgD8AAIA/M83ZPLdnPD4DcAy+r/BNvu6u6Lv5pos9AAAAAAAAAABAS38+xb7jPJckuDm/4X84pgGAPrBMALkAAIA/AACAP4AtAL3sgeO5YqWMuv9hLba5Je87HfmkOQAAgD8AAIA/ALEYvmww6LsjmdW763/WuVtVSz2INOM6AACAPwAAgD9Nr489XEtCun43+bs92rY2z3oFOi1PJbYAAIA/AACAP3Ooxz1IgcC4YfCVuua6MrZOP6s6bLmyOQAAgD8AAIA/Mwd/PY9GXbqNQy248kWGs6Y5F7llFkc3AACAPwAAgD/NqLA9j/4vutTvNzmJINizE12EOmPwV7gAAIA/AACAPxjMrr59iRi93pMSPlZzXb6ILvc9ctJDPwAAgD8AAAAA2nnoPVxvZrqu2qc7KeygOc/a/DquPmA6AACAPwAAgD/zBMo9xtmFP6ZkHj5GToq+PiSKPYqXmT0AAAAAAAAAAM2PlT0pWBa6q7Keu7Vhdzji1wS6mLl+OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYRkbutkbQECUhpRSlIwBbJRN6AOMAXSUR0CAsDc9GI9DdX2UKGgGaAloD0MIRwGiYEYSYUCUhpRSlGgVTegDaBZHQIC0g+QlruZ1fZQoaAZoCWgPQwgykj1CzeJeQJSGlFKUaBVN6ANoFkdAgLh/f4yoGnV9lChoBmgJaA9DCN2zrtHyx2BAlIaUUpRoFU3oA2gWR0CAyB+KCQLedX2UKGgGaAloD0MIDTm2nqFeY0CUhpRSlGgVTegDaBZHQIDPv1WbPQh1fZQoaAZoCWgPQwgjLCridDBPQJSGlFKUaBVN6ANoFkdAgOOM9jgAInV9lChoBmgJaA9DCKGFBIwuylxAlIaUUpRoFU3oA2gWR0CA61mFrVOLdX2UKGgGaAloD0MILc4Y5gR6YECUhpRSlGgVTegDaBZHQID2WCbtqpN1fZQoaAZoCWgPQwjekEYFToxhQJSGlFKUaBVN6ANoFkdAgP3JY1YQrnV9lChoBmgJaA9DCJKWytuRtGFAlIaUUpRoFU3oA2gWR0CBCEEGqxTsdX2UKGgGaAloD0MI2LrUCP1EXUCUhpRSlGgVTegDaBZHQIEIbaK1og51fZQoaAZoCWgPQwj1LXO6LLFVQJSGlFKUaBVN6ANoFkdAgQ6vjGT9sXV9lChoBmgJaA9DCHgpdck4Jh9AlIaUUpRoFU0YAWgWR0CBEeJb+tKadX2UKGgGaAloD0MId/UqMrpcYECUhpRSlGgVTegDaBZHQIEZfDNyHVR1fZQoaAZoCWgPQwiRRgVOtkhcQJSGlFKUaBVN6ANoFkdAgUxuL74zrXV9lChoBmgJaA9DCMJsAgzLqFRAlIaUUpRoFU3oA2gWR0CBV3R+BpYcdX2UKGgGaAloD0MIvk7qy1JsYkCUhpRSlGgVTegDaBZHQIFXv/zasZJ1fZQoaAZoCWgPQwhwKHy2DpJbQJSGlFKUaBVN6ANoFkdAgV4QhwEQoXV9lChoBmgJaA9DCHJw6Zjzt2NAlIaUUpRoFU3oA2gWR0CBYf6t1ZDBdX2UKGgGaAloD0MItcGJ6NdNX0CUhpRSlGgVTegDaBZHQIFlwV2zOX51fZQoaAZoCWgPQwjTakjcYw5TQJSGlFKUaBVN6ANoFkdAgXRfLs8gZHV9lChoBmgJaA9DCG8qUmFsMVBAlIaUUpRoFU3oA2gWR0CBeyobXHzZdX2UKGgGaAloD0MIai43GOpsOECUhpRSlGgVTTQBaBZHQIF+Xf4yoGZ1fZQoaAZoCWgPQwgHJ6JfW9ZcQJSGlFKUaBVN6ANoFkdAgYwmxMWXTnV9lChoBmgJaA9DCJ32lJwTel1AlIaUUpRoFU3oA2gWR0CBn0RPGhmHdX2UKGgGaAloD0MIGejaF9D6WECUhpRSlGgVTegDaBZHQIGnKXWvr4Z1fZQoaAZoCWgPQwgh6j4AqWZaQJSGlFKUaBVN6ANoFkdAgbMUOEug6HV9lChoBmgJaA9DCNKsbB/yEF9AlIaUUpRoFU3oA2gWR0CBs0TfR/mUdX2UKGgGaAloD0MIlNqLaDt2UUCUhpRSlGgVTegDaBZHQIG67pHI6sB1fZQoaAZoCWgPQwh1yqMbYdZeQJSGlFKUaBVN6ANoFkdAgb6/IsAeaXV9lChoBmgJaA9DCJEm3gGeQllAlIaUUpRoFU3oA2gWR0CBx2+bmU4adX2UKGgGaAloD0MITyDsFKsZYUCUhpRSlGgVTegDaBZHQIH8F9Sde6Z1fZQoaAZoCWgPQwjysFBrmgFZQJSGlFKUaBVN6ANoFkdAggfmkvboKXV9lChoBmgJaA9DCLGJzFzgiV5AlIaUUpRoFU3oA2gWR0CCDpIEKVpsdX2UKGgGaAloD0MIsktUbw1LYUCUhpRSlGgVTegDaBZHQIISkiwB5op1fZQoaAZoCWgPQwjd7uU+OStYQJSGlFKUaBVN6ANoFkdAghamus90R3V9lChoBmgJaA9DCMGtu3mq8FVAlIaUUpRoFU3oA2gWR0CCJm/WUbDNdX2UKGgGaAloD0MINo/DYP6jV0CUhpRSlGgVTegDaBZHQIIt9tGd7OV1fZQoaAZoCWgPQwjBOSNKe71fQJSGlFKUaBVN6ANoFkdAgjFh7u2JBXV9lChoBmgJaA9DCLMLBtfcUQ5AlIaUUpRoFU0SAWgWR0CCO91A7gbZdX2UKGgGaAloD0MIOQ68Wu71WUCUhpRSlGgVTegDaBZHQII/5blijL11fZQoaAZoCWgPQwjSGoNOCLlgQJSGlFKUaBVN6ANoFkdAglBiM5wOv3V9lChoBmgJaA9DCI1jJHuEGhpAlIaUUpRoFU0QAWgWR0CCUqR3/xUedX2UKGgGaAloD0MI/yCSIUcIZECUhpRSlGgVTegDaBZHQIJXft+kP+Z1fZQoaAZoCWgPQwhzDp4JTaJaQJSGlFKUaBVN6ANoFkdAgmFbiZOSGXV9lChoBmgJaA9DCMmP+BVrB2JAlIaUUpRoFU3oA2gWR0CCYYH9m6GydX2UKGgGaAloD0MIilsFMVBgY0CUhpRSlGgVTegDaBZHQIJoFS2phnd1fZQoaAZoCWgPQwimlxjL9BBbQJSGlFKUaBVN6ANoFkdAgmtEZaV2R3V9lChoBmgJaA9DCErP9BJjuUFAlIaUUpRoFUvzaBZHQIJyIBLf1pV1fZQoaAZoCWgPQwi2hlJ7kbVhQJSGlFKUaBVN6ANoFkdAgnLmKqGUOnV9lChoBmgJaA9DCDuJCP8iD15AlIaUUpRoFU3oA2gWR0CCpnOE/SpjdX2UKGgGaAloD0MIcD51rFKrV0CUhpRSlGgVTegDaBZHQIKx4ToMa0h1fZQoaAZoCWgPQwjDLR9JSUthQJSGlFKUaBVN6ANoFkdAgribtqpLmXV9lChoBmgJaA9DCL2L9+P2iwdAlIaUUpRoFU0UAWgWR0CCvAZssQNDdX2UKGgGaAloD0MIBiy5isUKWUCUhpRSlGgVTegDaBZHQIK84CbMHKR1fZQoaAZoCWgPQwg0uRgD6yRWQJSGlFKUaBVN6ANoFkdAgtIhcAzYVnV9lChoBmgJaA9DCJG6nX3lNFpAlIaUUpRoFU3oA2gWR0CC3kQRPGhmdX2UKGgGaAloD0MI5dL4hVfCOECUhpRSlGgVTRABaBZHQILgO1twaR91fZQoaAZoCWgPQwgw9fOmIp9TQJSGlFKUaBVN6ANoFkdAgulW56MR6HV9lChoBmgJaA9DCNwsXiyMAmRAlIaUUpRoFU3oA2gWR0CC7X3nIQvpdX2UKGgGaAloD0MI3J212y6hYECUhpRSlGgVTegDaBZHQIL/NJrcj7h1fZQoaAZoCWgPQwgNjLysibdcQJSGlFKUaBVN6ANoFkdAgwayu6mO2nV9lChoBmgJaA9DCEZhF0UPmmFAlIaUUpRoFU3oA2gWR0CDEMVTJhfCdX2UKGgGaAloD0MIiPccWI5NVkCUhpRSlGgVTegDaBZHQIMQ6idrftR1fZQoaAZoCWgPQwgwZeCAlgBhQJSGlFKUaBVN6ANoFkdAgxb4O2AoX3V9lChoBmgJaA9DCN4gWitag2BAlIaUUpRoFU3oA2gWR0CDGfkOI68ydX2UKGgGaAloD0MIxuHMr+aCXECUhpRSlGgVTegDaBZHQIMhBo4+8oR1fZQoaAZoCWgPQwhfRrHcUktgQJSGlFKUaBVN6ANoFkdAgy+H/DLr5nV9lChoBmgJaA9DCK5jXHFxwFdAlIaUUpRoFU3oA2gWR0CDXah6By0bdX2UKGgGaAloD0MIliL5SiCVNECUhpRSlGgVTVMBaBZHQINeDfWMCLd1fZQoaAZoCWgPQwimgLT/AUtYQJSGlFKUaBVN6ANoFkdAg2dcKw6hg3V9lChoBmgJaA9DCK+WOzPBA19AlIaUUpRoFU3oA2gWR0CDaCxoqTbGdX2UKGgGaAloD0MI61VkdMAAZUCUhpRSlGgVTegDaBZHQIN9OpAD7qJ1fZQoaAZoCWgPQwge3QiLigpgQJSGlFKUaBVN6ANoFkdAg4lCAtnPFHV9lChoBmgJaA9DCEBMwoU8/VBAlIaUUpRoFU3oA2gWR0CDi0j/MnqndX2UKGgGaAloD0MIlDR/TGv+XUCUhpRSlGgVTegDaBZHQIOVEgKWszV1fZQoaAZoCWgPQwhEvkupS7dfQJSGlFKUaBVN6ANoFkdAg5lO1v2oN3V9lChoBmgJaA9DCMtN1NLc8FhAlIaUUpRoFU3oA2gWR0CDqtlBhQWOdX2UKGgGaAloD0MI3rBtUWZCZUCUhpRSlGgVTegDaBZHQIOyfTiKiwl1fZQoaAZoCWgPQwiymxn9aOFeQJSGlFKUaBVN6ANoFkdAg733sXzlLnV9lChoBmgJaA9DCPceLjnu8VRAlIaUUpRoFU3oA2gWR0CDxh0g8r7PdX2UKGgGaAloD0MIwOszZ322Y0CUhpRSlGgVTegDaBZHQIPJ6rgflp51fZQoaAZoCWgPQwiIgEOoUtxiQJSGlFKUaBVN6ANoFkdAg9LtE5Qxe3V9lChoBmgJaA9DCHxI+N7fiFxAlIaUUpRoFU3oA2gWR0CD5IMtsenydX2UKGgGaAloD0MIo1cDlAbnY0CUhpRSlGgVTegDaBZHQIQU2LiuMdd1fZQoaAZoCWgPQwiaJ9cUyDdaQJSGlFKUaBVN6ANoFkdAhBVVcD8tPHV9lChoBmgJaA9DCBQEj29v62BAlIaUUpRoFU3oA2gWR0CEH3oLXtjTdX2UKGgGaAloD0MIRrQdU3dfYUCUhpRSlGgVTegDaBZHQIQgcJhOP/91fZQoaAZoCWgPQwh2bW+3JK9iQJSGlFKUaBVN6ANoFkdAhDYDsdDIBHV9lChoBmgJaA9DCCJQ/YNIkFlAlIaUUpRoFU3oA2gWR0CEQnm8ujASdX2UKGgGaAloD0MIgzP4+8UYZECUhpRSlGgVTegDaBZHQIREc8s+V1R1fZQoaAZoCWgPQwjl0Y2wqFphQJSGlFKUaBVN6ANoFkdAhE30cGTs6nV9lChoBmgJaA9DCEzg1t088F5AlIaUUpRoFU3oA2gWR0CEUizF+/g0dX2UKGgGaAloD0MIdlQ1QdSPXECUhpRSlGgVTegDaBZHQIRkvLLZBcB1fZQoaAZoCWgPQwjXiGAcXL5cQJSGlFKUaBVN6ANoFkdAhGxYg7o0RHV9lChoBmgJaA9DCPEsQUZAAmFAlIaUUpRoFU3oA2gWR0CEd87nxJ/YdX2UKGgGaAloD0MIsvM2NrsOYUCUhpRSlGgVTegDaBZHQIR/kMLF4s51fZQoaAZoCWgPQwgyHTo97zJhQJSGlFKUaBVN6ANoFkdAhIMj9fkWAXV9lChoBmgJaA9DCAt6bwwByWJAlIaUUpRoFU3oA2gWR0CEi+88La24dX2UKGgGaAloD0MIYqHWNO8CXECUhpRSlGgVTegDaBZHQISkfyZrpJR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:289b1a11ca9d2b298e018fd0271d73c49ae195d4d665fc74a7849bae6537bf00
|
3 |
+
size 144048
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f604cb08290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f604cb08320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f604cb083b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f604cb08440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f604cb084d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f604cb08560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f604cb085f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f604cb08680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f604cb08710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f604cb087a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f604cb08830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f604cb527e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652165466.5225573,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2EHjvHXRY/cqh9veldzr2YNag8DMGevQAAAAAAAAAAwImSPR+Fn7lsP5C68ey3NY+Spbsydqo5AACAPwAAgD9mCQs9PQoCuVrc8rorOVi1mE+/u7fUDjoAAIA/AACAPyaGib1PxHy8zpihPTD3jL2v4DQ8H2YXPQAAgD8AAIA/M83ZPLdnPD4DcAy+r/BNvu6u6Lv5pos9AAAAAAAAAABAS38+xb7jPJckuDm/4X84pgGAPrBMALkAAIA/AACAP4AtAL3sgeO5YqWMuv9hLba5Je87HfmkOQAAgD8AAIA/ALEYvmww6LsjmdW763/WuVtVSz2INOM6AACAPwAAgD9Nr489XEtCun43+bs92rY2z3oFOi1PJbYAAIA/AACAP3Ooxz1IgcC4YfCVuua6MrZOP6s6bLmyOQAAgD8AAIA/Mwd/PY9GXbqNQy248kWGs6Y5F7llFkc3AACAPwAAgD/NqLA9j/4vutTvNzmJINizE12EOmPwV7gAAIA/AACAPxjMrr59iRi93pMSPlZzXb6ILvc9ctJDPwAAgD8AAAAA2nnoPVxvZrqu2qc7KeygOc/a/DquPmA6AACAPwAAgD/zBMo9xtmFP6ZkHj5GToq+PiSKPYqXmT0AAAAAAAAAAM2PlT0pWBa6q7Keu7Vhdzji1wS6mLl+OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYRkbutkbQECUhpRSlIwBbJRN6AOMAXSUR0CAsDc9GI9DdX2UKGgGaAloD0MIRwGiYEYSYUCUhpRSlGgVTegDaBZHQIC0g+QlruZ1fZQoaAZoCWgPQwgykj1CzeJeQJSGlFKUaBVN6ANoFkdAgLh/f4yoGnV9lChoBmgJaA9DCN2zrtHyx2BAlIaUUpRoFU3oA2gWR0CAyB+KCQLedX2UKGgGaAloD0MIDTm2nqFeY0CUhpRSlGgVTegDaBZHQIDPv1WbPQh1fZQoaAZoCWgPQwgjLCridDBPQJSGlFKUaBVN6ANoFkdAgOOM9jgAInV9lChoBmgJaA9DCKGFBIwuylxAlIaUUpRoFU3oA2gWR0CA61mFrVOLdX2UKGgGaAloD0MILc4Y5gR6YECUhpRSlGgVTegDaBZHQID2WCbtqpN1fZQoaAZoCWgPQwjekEYFToxhQJSGlFKUaBVN6ANoFkdAgP3JY1YQrnV9lChoBmgJaA9DCJKWytuRtGFAlIaUUpRoFU3oA2gWR0CBCEEGqxTsdX2UKGgGaAloD0MI2LrUCP1EXUCUhpRSlGgVTegDaBZHQIEIbaK1og51fZQoaAZoCWgPQwj1LXO6LLFVQJSGlFKUaBVN6ANoFkdAgQ6vjGT9sXV9lChoBmgJaA9DCHgpdck4Jh9AlIaUUpRoFU0YAWgWR0CBEeJb+tKadX2UKGgGaAloD0MId/UqMrpcYECUhpRSlGgVTegDaBZHQIEZfDNyHVR1fZQoaAZoCWgPQwiRRgVOtkhcQJSGlFKUaBVN6ANoFkdAgUxuL74zrXV9lChoBmgJaA9DCMJsAgzLqFRAlIaUUpRoFU3oA2gWR0CBV3R+BpYcdX2UKGgGaAloD0MIvk7qy1JsYkCUhpRSlGgVTegDaBZHQIFXv/zasZJ1fZQoaAZoCWgPQwhwKHy2DpJbQJSGlFKUaBVN6ANoFkdAgV4QhwEQoXV9lChoBmgJaA9DCHJw6Zjzt2NAlIaUUpRoFU3oA2gWR0CBYf6t1ZDBdX2UKGgGaAloD0MItcGJ6NdNX0CUhpRSlGgVTegDaBZHQIFlwV2zOX51fZQoaAZoCWgPQwjTakjcYw5TQJSGlFKUaBVN6ANoFkdAgXRfLs8gZHV9lChoBmgJaA9DCG8qUmFsMVBAlIaUUpRoFU3oA2gWR0CBeyobXHzZdX2UKGgGaAloD0MIai43GOpsOECUhpRSlGgVTTQBaBZHQIF+Xf4yoGZ1fZQoaAZoCWgPQwgHJ6JfW9ZcQJSGlFKUaBVN6ANoFkdAgYwmxMWXTnV9lChoBmgJaA9DCJ32lJwTel1AlIaUUpRoFU3oA2gWR0CBn0RPGhmHdX2UKGgGaAloD0MIGejaF9D6WECUhpRSlGgVTegDaBZHQIGnKXWvr4Z1fZQoaAZoCWgPQwgh6j4AqWZaQJSGlFKUaBVN6ANoFkdAgbMUOEug6HV9lChoBmgJaA9DCNKsbB/yEF9AlIaUUpRoFU3oA2gWR0CBs0TfR/mUdX2UKGgGaAloD0MIlNqLaDt2UUCUhpRSlGgVTegDaBZHQIG67pHI6sB1fZQoaAZoCWgPQwh1yqMbYdZeQJSGlFKUaBVN6ANoFkdAgb6/IsAeaXV9lChoBmgJaA9DCJEm3gGeQllAlIaUUpRoFU3oA2gWR0CBx2+bmU4adX2UKGgGaAloD0MITyDsFKsZYUCUhpRSlGgVTegDaBZHQIH8F9Sde6Z1fZQoaAZoCWgPQwjysFBrmgFZQJSGlFKUaBVN6ANoFkdAggfmkvboKXV9lChoBmgJaA9DCLGJzFzgiV5AlIaUUpRoFU3oA2gWR0CCDpIEKVpsdX2UKGgGaAloD0MIsktUbw1LYUCUhpRSlGgVTegDaBZHQIISkiwB5op1fZQoaAZoCWgPQwjd7uU+OStYQJSGlFKUaBVN6ANoFkdAghamus90R3V9lChoBmgJaA9DCMGtu3mq8FVAlIaUUpRoFU3oA2gWR0CCJm/WUbDNdX2UKGgGaAloD0MINo/DYP6jV0CUhpRSlGgVTegDaBZHQIIt9tGd7OV1fZQoaAZoCWgPQwjBOSNKe71fQJSGlFKUaBVN6ANoFkdAgjFh7u2JBXV9lChoBmgJaA9DCLMLBtfcUQ5AlIaUUpRoFU0SAWgWR0CCO91A7gbZdX2UKGgGaAloD0MIOQ68Wu71WUCUhpRSlGgVTegDaBZHQII/5blijL11fZQoaAZoCWgPQwjSGoNOCLlgQJSGlFKUaBVN6ANoFkdAglBiM5wOv3V9lChoBmgJaA9DCI1jJHuEGhpAlIaUUpRoFU0QAWgWR0CCUqR3/xUedX2UKGgGaAloD0MI/yCSIUcIZECUhpRSlGgVTegDaBZHQIJXft+kP+Z1fZQoaAZoCWgPQwhzDp4JTaJaQJSGlFKUaBVN6ANoFkdAgmFbiZOSGXV9lChoBmgJaA9DCMmP+BVrB2JAlIaUUpRoFU3oA2gWR0CCYYH9m6GydX2UKGgGaAloD0MIilsFMVBgY0CUhpRSlGgVTegDaBZHQIJoFS2phnd1fZQoaAZoCWgPQwimlxjL9BBbQJSGlFKUaBVN6ANoFkdAgmtEZaV2R3V9lChoBmgJaA9DCErP9BJjuUFAlIaUUpRoFUvzaBZHQIJyIBLf1pV1fZQoaAZoCWgPQwi2hlJ7kbVhQJSGlFKUaBVN6ANoFkdAgnLmKqGUOnV9lChoBmgJaA9DCDuJCP8iD15AlIaUUpRoFU3oA2gWR0CCpnOE/SpjdX2UKGgGaAloD0MIcD51rFKrV0CUhpRSlGgVTegDaBZHQIKx4ToMa0h1fZQoaAZoCWgPQwjDLR9JSUthQJSGlFKUaBVN6ANoFkdAgribtqpLmXV9lChoBmgJaA9DCL2L9+P2iwdAlIaUUpRoFU0UAWgWR0CCvAZssQNDdX2UKGgGaAloD0MIBiy5isUKWUCUhpRSlGgVTegDaBZHQIK84CbMHKR1fZQoaAZoCWgPQwg0uRgD6yRWQJSGlFKUaBVN6ANoFkdAgtIhcAzYVnV9lChoBmgJaA9DCJG6nX3lNFpAlIaUUpRoFU3oA2gWR0CC3kQRPGhmdX2UKGgGaAloD0MI5dL4hVfCOECUhpRSlGgVTRABaBZHQILgO1twaR91fZQoaAZoCWgPQwgw9fOmIp9TQJSGlFKUaBVN6ANoFkdAgulW56MR6HV9lChoBmgJaA9DCNwsXiyMAmRAlIaUUpRoFU3oA2gWR0CC7X3nIQvpdX2UKGgGaAloD0MI3J212y6hYECUhpRSlGgVTegDaBZHQIL/NJrcj7h1fZQoaAZoCWgPQwgNjLysibdcQJSGlFKUaBVN6ANoFkdAgwayu6mO2nV9lChoBmgJaA9DCEZhF0UPmmFAlIaUUpRoFU3oA2gWR0CDEMVTJhfCdX2UKGgGaAloD0MIiPccWI5NVkCUhpRSlGgVTegDaBZHQIMQ6idrftR1fZQoaAZoCWgPQwgwZeCAlgBhQJSGlFKUaBVN6ANoFkdAgxb4O2AoX3V9lChoBmgJaA9DCN4gWitag2BAlIaUUpRoFU3oA2gWR0CDGfkOI68ydX2UKGgGaAloD0MIxuHMr+aCXECUhpRSlGgVTegDaBZHQIMhBo4+8oR1fZQoaAZoCWgPQwhfRrHcUktgQJSGlFKUaBVN6ANoFkdAgy+H/DLr5nV9lChoBmgJaA9DCK5jXHFxwFdAlIaUUpRoFU3oA2gWR0CDXah6By0bdX2UKGgGaAloD0MIliL5SiCVNECUhpRSlGgVTVMBaBZHQINeDfWMCLd1fZQoaAZoCWgPQwimgLT/AUtYQJSGlFKUaBVN6ANoFkdAg2dcKw6hg3V9lChoBmgJaA9DCK+WOzPBA19AlIaUUpRoFU3oA2gWR0CDaCxoqTbGdX2UKGgGaAloD0MI61VkdMAAZUCUhpRSlGgVTegDaBZHQIN9OpAD7qJ1fZQoaAZoCWgPQwge3QiLigpgQJSGlFKUaBVN6ANoFkdAg4lCAtnPFHV9lChoBmgJaA9DCEBMwoU8/VBAlIaUUpRoFU3oA2gWR0CDi0j/MnqndX2UKGgGaAloD0MIlDR/TGv+XUCUhpRSlGgVTegDaBZHQIOVEgKWszV1fZQoaAZoCWgPQwhEvkupS7dfQJSGlFKUaBVN6ANoFkdAg5lO1v2oN3V9lChoBmgJaA9DCMtN1NLc8FhAlIaUUpRoFU3oA2gWR0CDqtlBhQWOdX2UKGgGaAloD0MI3rBtUWZCZUCUhpRSlGgVTegDaBZHQIOyfTiKiwl1fZQoaAZoCWgPQwiymxn9aOFeQJSGlFKUaBVN6ANoFkdAg733sXzlLnV9lChoBmgJaA9DCPceLjnu8VRAlIaUUpRoFU3oA2gWR0CDxh0g8r7PdX2UKGgGaAloD0MIwOszZ322Y0CUhpRSlGgVTegDaBZHQIPJ6rgflp51fZQoaAZoCWgPQwiIgEOoUtxiQJSGlFKUaBVN6ANoFkdAg9LtE5Qxe3V9lChoBmgJaA9DCHxI+N7fiFxAlIaUUpRoFU3oA2gWR0CD5IMtsenydX2UKGgGaAloD0MIo1cDlAbnY0CUhpRSlGgVTegDaBZHQIQU2LiuMdd1fZQoaAZoCWgPQwiaJ9cUyDdaQJSGlFKUaBVN6ANoFkdAhBVVcD8tPHV9lChoBmgJaA9DCBQEj29v62BAlIaUUpRoFU3oA2gWR0CEH3oLXtjTdX2UKGgGaAloD0MIRrQdU3dfYUCUhpRSlGgVTegDaBZHQIQgcJhOP/91fZQoaAZoCWgPQwh2bW+3JK9iQJSGlFKUaBVN6ANoFkdAhDYDsdDIBHV9lChoBmgJaA9DCCJQ/YNIkFlAlIaUUpRoFU3oA2gWR0CEQnm8ujASdX2UKGgGaAloD0MIgzP4+8UYZECUhpRSlGgVTegDaBZHQIREc8s+V1R1fZQoaAZoCWgPQwjl0Y2wqFphQJSGlFKUaBVN6ANoFkdAhE30cGTs6nV9lChoBmgJaA9DCEzg1t088F5AlIaUUpRoFU3oA2gWR0CEUizF+/g0dX2UKGgGaAloD0MIdlQ1QdSPXECUhpRSlGgVTegDaBZHQIRkvLLZBcB1fZQoaAZoCWgPQwjXiGAcXL5cQJSGlFKUaBVN6ANoFkdAhGxYg7o0RHV9lChoBmgJaA9DCPEsQUZAAmFAlIaUUpRoFU3oA2gWR0CEd87nxJ/YdX2UKGgGaAloD0MIsvM2NrsOYUCUhpRSlGgVTegDaBZHQIR/kMLF4s51fZQoaAZoCWgPQwgyHTo97zJhQJSGlFKUaBVN6ANoFkdAhIMj9fkWAXV9lChoBmgJaA9DCAt6bwwByWJAlIaUUpRoFU3oA2gWR0CEi+88La24dX2UKGgGaAloD0MIYqHWNO8CXECUhpRSlGgVTegDaBZHQISkfyZrpJR1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2145c1f9ec4f4eddef5fe70be077dd0e025a38080449cb3627ae8e279d4913d1
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f361d5b656eab7576e2d6f46dc44a5e8d658bbd9f1960a23dadddc30fba74bce
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a37329d52299312fba3980db0a8379b42d9db2122bf9f1753aea79263ee1fbf
|
3 |
+
size 258291
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 202.31528694205605, "std_reward": 21.753894331655385, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T07:12:51.192404"}
|