jeffra commited on
Commit
3d88dcd
·
verified ·
1 Parent(s): 4930836

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -1
README.md CHANGED
@@ -2,4 +2,32 @@
2
  license: llama3.1
3
  base_model:
4
  - meta-llama/Llama-3.1-405B-Instruct
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: llama3.1
3
  base_model:
4
  - meta-llama/Llama-3.1-405B-Instruct
5
+ ---
6
+
7
+ # SwiftKV
8
+
9
+ The Snowflake AI Research team is releasing a series of SwiftKV optimized Llama-3.1 models. [SwiftKV](https://arxiv.org/abs/2410.03960) is a series of inference optimizations that goes beyond traditional key-value (KV) cache compression. This method reduces computational overhead during prompt processing by combining model rewiring and knowledge-preserving self-distillation, allowing prefill tokens to skip up to half the model's layers. SwiftKV achieves up to 2x improvements in throughput, latency, and cost efficiency with minimal accuracy loss, making LLM deployments more performant and economically viable.
10
+
11
+ For more details about SwiftKV and how to use it:
12
+ * ❄️ [SwiftKV: Accelerating Enterprise LLM Workloads with Knowledge Preserving Compute Reduction (blog)](https://www.snowflake.com/engineering-blog/swiftkv-llm-compute-reduction/)
13
+ * 📝 [SwiftKV: Fast Prefill-Optimized Inference with Knowledge-Preserving Model Transformation (arXiv)](https://arxiv.org/abs/2410.03960)
14
+ * 🚀 [Getting started guide](https://github.com/Snowflake-Labs/vllm/tree/swiftkv/examples/swiftkv)
15
+
16
+ ## Eval Metrics
17
+
18
+ For a full breakdown on evaluation metrics and performance impact please refer to our [blog](https://www.snowflake.com/engineering-blog/swiftkv-llm-compute-reduction/) and [arXiv paper]((https://arxiv.org/abs/2410.03960)) but below we've outlined some relevant evaluation metrics.
19
+
20
+ | Llama-3.1-405B-Instruct-FP8 | Arc Challenge | Winogrande | HellaSwag | TruthfulQA | MMLU | MMLU cot | GSM8K | Avg |
21
+ |-----------|---------------|------------|-----------|------------|------|----------|-------|-----|
22
+ | Baseline | 94.7 | 87.0 | 88.3 | 64.7 | 87.5 | 88.1 | 96.1 | **86.6** |
23
+ | 50% SingleInputKV | 94.0 | 86.3 | 88.1 | 64.2 | 85.7 | 87.5 | 95.2 | **85.9** |
24
+
25
+ | Llama-3.1-8B-Instruct | Arc Challenge | Winogrande | HellaSwag | TruthfulQA | MMLU | MMLU cot | GSM8K | Avg |
26
+ |-----------|---------------|------------|-----------|------------|------|----------|-------|-----|
27
+ | Baseline | 82.00 | 77.90 | 80.40 | 54.56 | 67.90 | 70.63 | 82.56 | **73.71** |
28
+ | 50% SingleInputKV | 80.38 | 78.22 | 79.30 | 54.54 | 67.30 | 69.73 | 79.45 | **72.70** |
29
+
30
+ ## Getting Started
31
+
32
+ Instructions on how to use vLLM for both evaluation and performance benchmarks:
33
+ https://github.com/Snowflake-Labs/vllm/tree/swiftkv/examples/swiftkv