SocialCompUW commited on
Commit
1ca810a
·
verified ·
1 Parent(s): 2bcc24a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -2
README.md CHANGED
@@ -37,10 +37,13 @@ The dataset was split 80-10-10 across the train (N=2180), validation (N=272), an
37
 
38
  To get started, you should initialize the model using AutoTokenizer and AutoModelForSequenceClassification classes. For the tokenizer, set "use_fast" parameter to False, the max_len to 1024, padding to "max_length," and truncation to True. For the model, set the "num_labels" parameter to 3.
39
 
40
- Next, with a YouTube video dataset with metadata, please concatenate each video's title, description, transcripts, and tags in the following manner:
 
41
  input = 'VIDEO TITLE: ' + title + '\nVIDEO DESCRIPTION: ' + description + '\nVIDEO TRANSCRIPT: ' + transcript + '\nVIDEO TAGS: ' + tags
42
 
43
- Thus, each video in your dataset should have its input metadata formatted in the structure above. Finally, run the input into a tokenizer and feed the tokenized input into the model to obtain one of three predicted labels. Use the logit function to obtain the label: _, pred_idx = outputs.logits.max(dim=1)
 
 
44
 
45
  ## Training Data
46
 
 
37
 
38
  To get started, you should initialize the model using AutoTokenizer and AutoModelForSequenceClassification classes. For the tokenizer, set "use_fast" parameter to False, the max_len to 1024, padding to "max_length," and truncation to True. For the model, set the "num_labels" parameter to 3.
39
 
40
+ Next, with a YouTube video dataset with metadata, please concatenate each video's title, description, transcripts, and tags in the following manner:
41
+
42
  input = 'VIDEO TITLE: ' + title + '\nVIDEO DESCRIPTION: ' + description + '\nVIDEO TRANSCRIPT: ' + transcript + '\nVIDEO TAGS: ' + tags
43
 
44
+ Thus, each video in your dataset should have its input metadata formatted in the structure above. Finally, run the input into a tokenizer and feed the tokenized input into the model to obtain one of three predicted labels. Use the logit function to obtain the label:
45
+
46
+ _, pred_idx = outputs.logits.max(dim=1)
47
 
48
  ## Training Data
49