ppo-LunarLander-v2 / config.json
Spagetti's picture
Upload PPO LunarLander-v2 trained agent (1.5M steps)
22525ae
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ef8935670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ef8935700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ef8935790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ef8935820>", "_build": "<function ActorCriticPolicy._build at 0x7f8ef89358b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8ef8935940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ef89359d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ef8935a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8ef8935af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ef8935b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ef8935c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ef8935ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8ef892d870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673798994327196615, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPoWK74pyUS8/tKRu3yN4blciaY9puC4OgAAgD8AAIA/8y++PWGYmj820xk/YBcXv58CRz0gSGE+AAAAAAAAAAAzr+I8lOHlPYXZ0zwg5pO+1wP1PPQltL0AAAAAAAAAAJonxTyWqQ8/+Fw0vGn8zb5rqzS8dqiEPQAAAAAAAAAA5t+dPQMwQD+6YR29iRu5vrkZcT1riGu9AAAAAAAAAAAA6Ek89hwmuqyqMbTun0WvetV3Om1NrjMAAIA/AACAPwBIyL16rkg+8cu8Pu2Qmr6VI3E+9q+ePQAAAAAAAAAAzYR5vHH8Vbs644g7nGyPPNIFzzyQ6XW9AACAPwAAgD9WWFy+WTYNPxq9kD5cz86+Rvw0vcB44j0AAAAAAAAAAM22g7ypclA9pmi1vPsaiL7cM6880hcUvAAAAAAAAAAAoCQVPnnatT/akPc+AEqivn3prD4EKYY+AAAAAAAAAAAzkkY9GAOKPjwYHD18c3q+EsmsPBrMPLsAAAAAAAAAADqsPz7Cgoc/0TYUPwFaCb+eoVQ+DPmjPgAAAAAAAAAAswYAvcY6sz/UHUO+TTlUvoa/J7s0Qgm+AAAAAAAAAADAV/o9mr6nP2iISz5q7fO+7gNMPvPiYr0AAAAAAAAAAADaY7wOI7I/RqjpvnQyn74fBiw8KgjWPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjgHZ651hckCUhpRSlIwBbJRNAAGMAXSUR0CbD0v4M4LkdX2UKGgGaAloD0MIhxdEpCaYc0CUhpRSlGgVS+5oFkdAmxBHB1s+FHV9lChoBmgJaA9DCPvnacCgYXBAlIaUUpRoFUvmaBZHQJsRB+OOsDJ1fZQoaAZoCWgPQwiS6dDp+RNyQJSGlFKUaBVL+GgWR0CbEXdv863idX2UKGgGaAloD0MI06V/SWoDc0CUhpRSlGgVS81oFkdAmxG1hkRSP3V9lChoBmgJaA9DCDTyecUTUXBAlIaUUpRoFUv1aBZHQJsRzf779AJ1fZQoaAZoCWgPQwgoRwGioFNyQJSGlFKUaBVL5mgWR0CbEmSIP9UCdX2UKGgGaAloD0MI1o7iHLUCcUCUhpRSlGgVS9ZoFkdAmxOmZE2HcnV9lChoBmgJaA9DCLItA87SCW5AlIaUUpRoFUvvaBZHQJsT5oWYWtV1fZQoaAZoCWgPQwiXcymuaoFxQJSGlFKUaBVL+WgWR0CbFAARTS9edX2UKGgGaAloD0MIpDmy8ss/ckCUhpRSlGgVS+xoFkdAmxQO85CF9XV9lChoBmgJaA9DCKLvbmVJ5nBAlIaUUpRoFU0EAWgWR0CbFHGBnSOSdX2UKGgGaAloD0MIfNXKhF8Kb0CUhpRSlGgVS/toFkdAmxVROxjawnV9lChoBmgJaA9DCNGUnX7Q0m5AlIaUUpRoFUvqaBZHQJsVYLc9GI91fZQoaAZoCWgPQwg8FAX6RFRCQJSGlFKUaBVLlmgWR0CbFWwyIpH7dX2UKGgGaAloD0MIzPEKRA81ckCUhpRSlGgVS+doFkdAmxYTshPj43V9lChoBmgJaA9DCIkkehlF029AlIaUUpRoFU0DAWgWR0CbFhl18stkdX2UKGgGaAloD0MInx7bMuAtckCUhpRSlGgVTQgBaBZHQJsXxW912aF1fZQoaAZoCWgPQwiSPULN0EhwQJSGlFKUaBVL52gWR0CbGCR2r4nGdX2UKGgGaAloD0MIXaRQFj5XcECUhpRSlGgVS/hoFkdAmxhoOMERrnV9lChoBmgJaA9DCB2Txf1HQHJAlIaUUpRoFU0SAWgWR0CbGXUNKAavdX2UKGgGaAloD0MIvvc3aC/CcECUhpRSlGgVTQwBaBZHQJsZ4o0ALiN1fZQoaAZoCWgPQwgychb2dERzQJSGlFKUaBVL2mgWR0CbGgiRW912dX2UKGgGaAloD0MIknTN5NvJckCUhpRSlGgVS+FoFkdAmxotb1RLsnV9lChoBmgJaA9DCC43GOqwiHJAlIaUUpRoFUveaBZHQJsakGLUCq91fZQoaAZoCWgPQwiIodXJmWttQJSGlFKUaBVL+mgWR0CbGpjBl+VkdX2UKGgGaAloD0MIxjAnaJNib0CUhpRSlGgVS/1oFkdAmxrdHxz7uXV9lChoBmgJaA9DCBqjdVT1nnJAlIaUUpRoFUvraBZHQJsbqtCAtnR1fZQoaAZoCWgPQwgDlfHvMw5vQJSGlFKUaBVL8GgWR0CbG+YfnwG4dX2UKGgGaAloD0MIsTOFzqthcUCUhpRSlGgVS+JoFkdAmxw6wpvxY3V9lChoBmgJaA9DCIWZtn+lV3JAlIaUUpRoFU0GAWgWR0CbHGdHDrJKdX2UKGgGaAloD0MI7ded7jyQcUCUhpRSlGgVTRABaBZHQJswg4LkS291fZQoaAZoCWgPQwjjiouj8jVvQJSGlFKUaBVL7mgWR0CbMWHYHxBmdX2UKGgGaAloD0MI4h5LH/oOckCUhpRSlGgVS+RoFkdAmzFxVZLZjHV9lChoBmgJaA9DCI+n5Qeuy25AlIaUUpRoFUviaBZHQJsxovg3tKJ1fZQoaAZoCWgPQwig+3JmexxzQJSGlFKUaBVL0GgWR0CbMoCQtBfKdX2UKGgGaAloD0MIFW9kHrkOckCUhpRSlGgVS9doFkdAmzLU6o2n9HV9lChoBmgJaA9DCE4oRMBhI3JAlIaUUpRoFUvuaBZHQJsy6BXjlxR1fZQoaAZoCWgPQwggzy7fepttQJSGlFKUaBVL8mgWR0CbM64+KTB7dX2UKGgGaAloD0MIWp9yTBamZECUhpRSlGgVTegDaBZHQJsz05XEIgN1fZQoaAZoCWgPQwjK/nkaMNhzQJSGlFKUaBVL72gWR0CbND7NjbztdX2UKGgGaAloD0MIRwN4C+SncUCUhpRSlGgVS9doFkdAmzR6m8/Uv3V9lChoBmgJaA9DCIfEPZa+6m1AlIaUUpRoFU0GAWgWR0CbNI5ggHNYdX2UKGgGaAloD0MIfjhIiPJ5bECUhpRSlGgVTRgBaBZHQJs08Fpwjt51fZQoaAZoCWgPQwh9IeS8PxRyQJSGlFKUaBVL8mgWR0CbNZwd8zAOdX2UKGgGaAloD0MI2uIan4kVcECUhpRSlGgVS/ZoFkdAmzXkO/cnE3V9lChoBmgJaA9DCDwtP3BVoXBAlIaUUpRoFU0YAWgWR0CbNjVQyhzvdX2UKGgGaAloD0MINuhLbz8wckCUhpRSlGgVS+hoFkdAmzZt2ovSMXV9lChoBmgJaA9DCKg1zTuOpHFAlIaUUpRoFUvyaBZHQJs3aieumrN1fZQoaAZoCWgPQwjDnKBNzqdwQJSGlFKUaBVL/GgWR0CbN5ujynUEdX2UKGgGaAloD0MIEvjDzz+4cUCUhpRSlGgVS+loFkdAmzgx0hePaXV9lChoBmgJaA9DCPDErBcDsXNAlIaUUpRoFU0MAWgWR0CbODs4T9KmdX2UKGgGaAloD0MI9DP1ukW6cECUhpRSlGgVS+loFkdAmzibROUMX3V9lChoBmgJaA9DCDgwuVGkinFAlIaUUpRoFUvWaBZHQJs485Jbt7d1fZQoaAZoCWgPQwhIbk26LQVwQJSGlFKUaBVL9mgWR0CbOQSiudPMdX2UKGgGaAloD0MIp7OTwZEdc0CUhpRSlGgVS9ZoFkdAmzkS8zyjHnV9lChoBmgJaA9DCD5d3bEYBHNAlIaUUpRoFUvraBZHQJs59NHpbEB1fZQoaAZoCWgPQwiL4eoAiPxwQJSGlFKUaBVL+mgWR0CbOo2JSBK+dX2UKGgGaAloD0MIWBr4Uc31cECUhpRSlGgVS+toFkdAmzqtLlFMI3V9lChoBmgJaA9DCHKlngXh4nBAlIaUUpRoFUv9aBZHQJs6tT72tdR1fZQoaAZoCWgPQwgw9l580RpyQJSGlFKUaBVLy2gWR0CbO3AZsKsudX2UKGgGaAloD0MIrUuN0I9Uc0CUhpRSlGgVTQoBaBZHQJs8KGahHsl1fZQoaAZoCWgPQwjwoxr2+0lxQJSGlFKUaBVNAwFoFkdAmzxGWldka3V9lChoBmgJaA9DCFb18jsNXHBAlIaUUpRoFUv5aBZHQJs8XmYBvJl1fZQoaAZoCWgPQwjONjemJwxwQJSGlFKUaBVL7mgWR0CbPVXY150KdX2UKGgGaAloD0MIexFtxxRecUCUhpRSlGgVS+5oFkdAmz2Jgb6xgXV9lChoBmgJaA9DCBBdUN/yZHNAlIaUUpRoFUvraBZHQJs+FZid8Rd1fZQoaAZoCWgPQwgMc4I2+fxwQJSGlFKUaBVLzmgWR0CbPh9sabWmdX2UKGgGaAloD0MI6SyzCIUmckCUhpRSlGgVS+toFkdAmz4frv9cbHV9lChoBmgJaA9DCPewFwpYh21AlIaUUpRoFUvdaBZHQJs+aHbh3q11fZQoaAZoCWgPQwh5dY4BWXlwQJSGlFKUaBVL7WgWR0CbPrR3/xUedX2UKGgGaAloD0MIIxRbQRNYc0CUhpRSlGgVTQgBaBZHQJs/AOhCdBl1fZQoaAZoCWgPQwjDu1zEN1hxQJSGlFKUaBVL02gWR0CbP6BdUsFudX2UKGgGaAloD0MI93ghHZ5fcUCUhpRSlGgVS/5oFkdAm0AbbUPQOXV9lChoBmgJaA9DCJG28SdqkHJAlIaUUpRoFUvsaBZHQJtAXsdDIBB1fZQoaAZoCWgPQwinWDUIsyBwQJSGlFKUaBVL82gWR0CbQI5/b0vodX2UKGgGaAloD0MIZoUi3U+9ckCUhpRSlGgVTQUBaBZHQJtBw2WIGhV1fZQoaAZoCWgPQwglPneCvTlwQJSGlFKUaBVL82gWR0CbQg3os7MgdX2UKGgGaAloD0MI/I7hsR8yckCUhpRSlGgVTQABaBZHQJtCeuaF23d1fZQoaAZoCWgPQwijrN9MDA5xQJSGlFKUaBVNDAFoFkdAm0LkgW8AaXV9lChoBmgJaA9DCGHEPgEUYnFAlIaUUpRoFUvZaBZHQJtDbDqGDcx1fZQoaAZoCWgPQwil12Zj5bpyQJSGlFKUaBVL9mgWR0CbQ2zhxYJWdX2UKGgGaAloD0MILxfxndiFc0CUhpRSlGgVS+FoFkdAm0OtVWCEpXV9lChoBmgJaA9DCJ6zBYRWNXFAlIaUUpRoFUvlaBZHQJtDyC+UQkJ1fZQoaAZoCWgPQwj3yrxVFzFwQJSGlFKUaBVL/GgWR0CbQ8rEcbR4dX2UKGgGaAloD0MIby9pjBYhcECUhpRSlGgVS95oFkdAm0PoQjD8+HV9lChoBmgJaA9DCGlVSzpK3HJAlIaUUpRoFUvgaBZHQJtFM3fhuO11fZQoaAZoCWgPQwhq3nGKDuRzQJSGlFKUaBVNFwFoFkdAm0WRPbfxc3V9lChoBmgJaA9DCLH5uDZUbHJAlIaUUpRoFUvgaBZHQJtFrisGPgh1fZQoaAZoCWgPQwgvhQfN7hNwQJSGlFKUaBVL82gWR0CbRnnNgSezdX2UKGgGaAloD0MImkF8YAdTckCUhpRSlGgVTQABaBZHQJtG+VgQYk51fZQoaAZoCWgPQwj7kLdcPU9yQJSGlFKUaBVL02gWR0CbR1SnLq2SdX2UKGgGaAloD0MIBwd7E8MAbkCUhpRSlGgVS+xoFkdAm0fIgaFVUHV9lChoBmgJaA9DCG+Cb5o+r3FAlIaUUpRoFUvraBZHQJtIeXOW0JF1fZQoaAZoCWgPQwjPukbLwbRxQJSGlFKUaBVL2GgWR0CbSOERJ2+xdX2UKGgGaAloD0MIWDfeHZmAcECUhpRSlGgVS9loFkdAm0lrj1f3OHV9lChoBmgJaA9DCKiPwB9+eHFAlIaUUpRoFU0AAWgWR0CbSXK5TZQIdX2UKGgGaAloD0MIHqM88/Kdc0CUhpRSlGgVS+xoFkdAm0nDtkWhy3V9lChoBmgJaA9DCKSIDKu4LXNAlIaUUpRoFUv6aBZHQJtJxzCDVYp1fZQoaAZoCWgPQwieYP91LtRwQJSGlFKUaBVL92gWR0CbSgi+L3sYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}