Splend1dchan commited on
Commit
b1d3eb3
·
1 Parent(s): 4967ae6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - xtreme_s
7
+ metrics:
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: xtreme_s_xlsr_300m_mt5-small_minds14.en-US
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xtreme_s_xlsr_300m_mt5-small_minds14.en-US
19
+
20
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the xtreme_s dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 4.7321
23
+ - F1: 0.0154
24
+ - Accuracy: 0.0638
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 0.0003
44
+ - train_batch_size: 8
45
+ - eval_batch_size: 64
46
+ - seed: 42
47
+ - gradient_accumulation_steps: 4
48
+ - total_train_batch_size: 32
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 100
52
+ - num_epochs: 50.0
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
59
+ | 2.6067 | 3.95 | 20 | 2.6501 | 0.0112 | 0.0851 |
60
+ | 2.5614 | 7.95 | 40 | 2.8018 | 0.0133 | 0.0603 |
61
+ | 2.2836 | 11.95 | 60 | 3.0786 | 0.0084 | 0.0603 |
62
+ | 1.9597 | 15.95 | 80 | 3.2288 | 0.0126 | 0.0638 |
63
+ | 1.5566 | 19.95 | 100 | 3.6934 | 0.0178 | 0.0567 |
64
+ | 1.3168 | 23.95 | 120 | 3.9135 | 0.0150 | 0.0638 |
65
+ | 1.0598 | 27.95 | 140 | 4.2618 | 0.0084 | 0.0603 |
66
+ | 0.5721 | 31.95 | 160 | 3.7973 | 0.0354 | 0.0780 |
67
+ | 0.4402 | 35.95 | 180 | 4.6233 | 0.0179 | 0.0638 |
68
+ | 0.6113 | 39.95 | 200 | 4.6149 | 0.0208 | 0.0674 |
69
+ | 0.3938 | 43.95 | 220 | 4.7886 | 0.0159 | 0.0638 |
70
+ | 0.2473 | 47.95 | 240 | 4.7321 | 0.0154 | 0.0638 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.18.0
76
+ - Pytorch 1.11.0+cu113
77
+ - Datasets 2.1.0
78
+ - Tokenizers 0.12.1