Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- robotics
|
5 |
+
- vla
|
6 |
+
- image-text-to-text
|
7 |
+
- multimodal
|
8 |
+
- pretraining
|
9 |
+
license: mit
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
pipeline_tag: image-text-to-text
|
13 |
+
---
|
14 |
+
|
15 |
+
# MiniVLA VQ 1B (Prismatic-Compatible Version)
|
16 |
+
|
17 |
+
<b>This checkpoint is in a format that is compatible with the training script from the original [Prismatic VLMs project codebase](https://github.com/TRI-ML/prismatic-vlms), which the OpenVLA
|
18 |
+
team built on top of to develop the OpenVLA model.</b>
|
19 |
+
|
20 |
+
This Prismatic-compatible checkpoint may be useful if you wish to <b>fully fine-tune</b> MiniVLA (all 1 billion parameters) via native PyTorch Fully
|
21 |
+
Sharded Data Parallel (FSDP) using the Prismatic VLMs training script. If you instead wish to do Parameter-Efficient Fine-Tuning via LoRA, you
|
22 |
+
can use the MiniVLA checkpoint linked above, which is compatible with the Hugging Face `transformers` library. We recommend fine-tuning via LoRA if
|
23 |
+
you do not have sufficient compute to fully fine-tune a 1B-parameter model (e.g., multiple A100/H100 GPUs).
|
24 |
+
|
25 |
+
## Usage Instructions
|
26 |
+
|
27 |
+
See the [MiniVLA GitHub README](https://github.com/Stanford-ILIAD/openvla-mini/blob/main/README.md) for instructions on how to use this checkpoint for full fine-tuning.
|
28 |
+
|
29 |
+
## Citation
|
30 |
+
|
31 |
+
**BibTeX:**
|
32 |
+
|
33 |
+
```bibtex
|
34 |
+
@article{kim24openvla,
|
35 |
+
title={MiniVLA: A Better VLA with a Smaller Footprint},
|
36 |
+
author={Suneel Belkhale and Dorsa Sadigh},
|
37 |
+
url={https://github.com/Stanford-ILIAD/openvla-mini}
|
38 |
+
year={2024}
|
39 |
+
}
|
40 |
+
```
|