|
import io |
|
import math |
|
import re |
|
from functools import partial |
|
from typing import List |
|
|
|
import albumentations as A |
|
import cv2 |
|
import numpy as np |
|
import pyarrow as pa |
|
import requests |
|
import torch |
|
import transformers |
|
from PIL import Image |
|
from albumentations.pytorch import ToTensorV2 |
|
from einops import rearrange |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.nn.init import trunc_normal_ |
|
from torchvision import transforms |
|
from torchvision.transforms import InterpolationMode |
|
from transformers import AutoModel, AutoProcessor |
|
from transformers.activations import ACT2FN |
|
|
|
assert transformers.__version__ == "4.40.0", "Please install a specific HF transformers version: pip install transformers==4.40.0" |
|
|
|
|
|
def get_abs_pos(abs_pos, tgt_size): |
|
|
|
|
|
|
|
src_size = int(math.sqrt(abs_pos.size(0))) |
|
tgt_size = int(math.sqrt(tgt_size)) |
|
dtype = abs_pos.dtype |
|
|
|
if src_size != tgt_size: |
|
return F.interpolate( |
|
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), |
|
size=(tgt_size, tgt_size), |
|
mode="bicubic", |
|
align_corners=False, |
|
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) |
|
else: |
|
return abs_pos |
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_h = np.arange(grid_size, dtype=np.float32) |
|
grid_w = np.arange(grid_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000 ** omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
class Resampler(nn.Module): |
|
""" |
|
A 2D perceiver-resampler network with one cross attention layers by |
|
(grid_size**2) learnable queries and 2d sincos pos_emb |
|
Outputs: |
|
A tensor with the shape of (grid_size**2, embed_dim) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
grid_size, |
|
embed_dim, |
|
num_heads, |
|
kv_dim=None, |
|
norm_layer=nn.LayerNorm |
|
): |
|
super().__init__() |
|
self.num_queries = grid_size ** 2 |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
|
|
self.pos_embed = nn.Parameter( |
|
torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float() |
|
).requires_grad_(False) |
|
|
|
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim)) |
|
|
|
|
|
if kv_dim is not None and kv_dim != embed_dim: |
|
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False) |
|
else: |
|
self.kv_proj = nn.Identity() |
|
|
|
self.attn = nn.MultiheadAttention(embed_dim, num_heads) |
|
self.ln_q = norm_layer(embed_dim) |
|
self.ln_kv = norm_layer(embed_dim) |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x, attn_mask=None): |
|
|
|
pos_embed = get_abs_pos(self.pos_embed, x.size(1)) |
|
|
|
x = self.kv_proj(x) |
|
x = self.ln_kv(x).permute(1, 0, 2) |
|
|
|
N = x.shape[1] |
|
q = self.ln_q(self.query) |
|
out = self.attn( |
|
self._repeat(q, N) + self.pos_embed.unsqueeze(1), |
|
x + pos_embed.unsqueeze(1), |
|
x, |
|
attn_mask=attn_mask |
|
)[0] |
|
return out.permute(1, 0, 2) |
|
|
|
def _repeat(self, query, N: int): |
|
return query.unsqueeze(1).repeat(1, N, 1) |
|
|
|
|
|
class CLIPModel(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
image_size: int, |
|
n_queries: int = 256, |
|
output_dim: int = 512, |
|
vision_model_name_or_path: str = "StanfordAIMI/XraySigLIP__vit-l-16-siglip-384__webli", |
|
**kwargs |
|
): |
|
super().__init__() |
|
|
|
self.model = AutoModel.from_pretrained(vision_model_name_or_path).vision_model |
|
self.processor = AutoProcessor.from_pretrained(vision_model_name_or_path).image_processor |
|
|
|
|
|
self.image_height, self.image_width = self.image_size = (image_size, image_size) |
|
width = self.model.config.hidden_size |
|
patch_height, patch_width = self.model.embeddings.patch_embedding.kernel_size |
|
self.grid_size = (self.image_height // patch_height, self.image_width // patch_width) |
|
self.output_dim = output_dim |
|
|
|
|
|
self.mean = self.processor.image_mean |
|
self.std = self.processor.image_std |
|
|
|
self.image_transform = transforms.Compose([ |
|
transforms.Resize( |
|
(image_size, image_size), |
|
interpolation=InterpolationMode.BICUBIC |
|
), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=self.mean, std=self.std), |
|
]) |
|
|
|
|
|
self.pos_embed = nn.Parameter( |
|
torch.from_numpy(get_2d_sincos_pos_embed(width, self.grid_size[0])).float() |
|
).requires_grad_(False) |
|
self.attn_pool = nn.Sequential( |
|
nn.Linear(width, output_dim * 4, bias=True), |
|
ACT2FN["gelu"], |
|
nn.Linear(output_dim * 4, output_dim, bias=True) |
|
) |
|
norm_layer = partial(nn.LayerNorm, eps=1e-6) |
|
self.ln_post = norm_layer(output_dim) |
|
self.proj = nn.Parameter((output_dim ** -0.5) * torch.randn(output_dim, output_dim), requires_grad=True) |
|
|
|
def forward_resampler(self, x): |
|
pos_embed = get_abs_pos(self.pos_embed, x.size(1)) |
|
x = x + pos_embed.unsqueeze(0) |
|
x = self.attn_pool(x) |
|
x = self.ln_post(x) |
|
x = x @ self.proj |
|
return x |
|
|
|
def forward(self, x: torch.Tensor): |
|
|
|
x = self.model(x, output_hidden_states=True).hidden_states[-1] |
|
|
|
|
|
x = self.forward_resampler(x) |
|
return x |
|
|
|
def load_image(self, image_path, training): |
|
if image_path.startswith("http://") or image_path.startswith("https://"): |
|
image = Image.open(requests.get(image_path, stream=True).raw) |
|
else: |
|
image = Image.open(image_path) |
|
|
|
image = image.convert("RGB") |
|
|
|
image_tensor = self.image_transform(image) |
|
return image_tensor |
|
|
|
def encode(self, image_paths: List[str], training): |
|
images = [] |
|
for image_path in image_paths: |
|
image = self.load_image(image_path, training) |
|
images.append(image) |
|
images = torch.stack(images, dim=0) |
|
images = images.to(dtype=next(self.parameters()).dtype, device=next(self.parameters()).device) |
|
outputs = self.forward(images) |
|
return outputs |
|
|