File size: 13,346 Bytes
c2178b9
 
844596b
 
c2178b9
844596b
 
 
bf86e21
 
1e9658a
bf86e21
 
faa572f
844596b
 
 
153758f
844596b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
803a83a
 
 
 
 
 
 
 
844596b
 
803a83a
844596b
 
 
 
 
 
 
 
 
 
 
803a83a
844596b
803a83a
844596b
 
803a83a
844596b
 
803a83a
844596b
803a83a
844596b
803a83a
844596b
803a83a
844596b
803a83a
844596b
803a83a
844596b
803a83a
 
844596b
 
 
 
 
803a83a
844596b
803a83a
844596b
803a83a
844596b
803a83a
844596b
803a83a
844596b
803a83a
844596b
 
803a83a
844596b
803a83a
844596b
803a83a
844596b
 
803a83a
844596b
803a83a
844596b
 
 
 
 
 
803a83a
844596b
803a83a
844596b
 
803a83a
844596b
803a83a
844596b
803a83a
844596b
803a83a
844596b
 
 
 
 
 
 
 
 
803a83a
844596b
803a83a
844596b
 
 
 
 
 
 
 
 
803a83a
844596b
803a83a
 
844596b
 
 
 
 
803a83a
844596b
803a83a
844596b
 
803a83a
844596b
803a83a
844596b
 
 
 
 
803a83a
844596b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
license: llama2
language:
- ko
---
# Llama-2-ko-7B-chat-ggml
<img src=https://huggingface.co/StarFox7/Llama-2-ko-7B-chat-ggml/resolve/main/cute.png style="max-width: 200px; width: 100%" />

**!!์ค‘์š”!!**
- ์ตœ์‹ ๋ฒ„์ „์˜ [llama-cpp](https://github.com/ggerganov/llama.cpp)(b1109), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)(v0.1.82) ์€ ์ƒˆ๋กญ๊ฒŒ ์ •์˜๋œ gguf ํฌ๋งท๋งŒ์„ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค.
- ์ตœ์‹ ๋ฒ„์ „์˜ [llama-cpp](https://github.com/ggerganov/llama.cpp), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) ์‚ฌ์šฉ์ž๊ป˜์„œ๋Š” [StarFox7/Llama-2-ko-7B-chat-gguf](https://huggingface.co/StarFox7/Llama-2-ko-7B-chat-gguf) ์—์„œ gguf ํฌ๋งท ๋ชจ๋ธ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

---
Llama-2-ko-7B-chat-ggml ์€ [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) ์— [nlpai-lab/kullm-v2](https://huggingface.co/datasets/nlpai-lab/kullm-v2) ๋ฅผ ํ•™์Šตํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ [kfkas/Llama-2-ko-7b-Chat](https://huggingface.co/kfkas/Llama-2-ko-7b-Chat) ์˜ **GGML** ํฌ๋งท ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

- Llama2 tokenizer ์— [kfkas/Llama-2-ko-7b-Chat](https://huggingface.co/kfkas/Llama-2-ko-7b-Chat) ์—์„œ ์‚ฌ์šฉ๋œ ํ•œ๊ตญ์–ด Additaional Token ์„ ๋ฐ˜์˜ํ•˜์—ฌ ์ƒ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.
- **GGML** ํฌ๋งท ๋ชจ๋ธ์€ [llama.cpp](https://github.com/ggerganov/llama.cpp) ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ C/C++ ๊ธฐ๋ฐ˜์œผ๋กœ Inference ํ•ฉ๋‹ˆ๋‹ค.
- **GGML** ํฌ๋งท ๋ชจ๋ธ์€ ๋น„๊ต์  ๋‚ฎ์€ ์‚ฌ์–‘์˜ ์ปดํ“จํŒ… ์ž์›์—์„œ๋„ Inference ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ( ์˜ˆ: 4๋น„ํŠธ ์–‘์žํ™” ๋ชจ๋ธ (q4) ์€ CPU,7-8GB RAM ํ™˜๊ฒฝ์—์„œ Inference ๊ฐ€๋Šฅ )
- [llama.cpp](https://github.com/ggerganov/llama.cpp) ์˜ Python Binding ํŒจํ‚ค์ง€์ธ [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) ์„ ์‚ฌ์šฉํ•˜๋ฉด python ํ™˜๊ฒฝ์—์„œ๋„ Inference ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

์ฐธ๊ณ ๋กœ, [Llama-2-ko-7B-ggml](https://huggingface.co/StarFox7/Llama-2-ko-7B-ggml) ์—์„œ [Llama-2-ko-7b-chat](https://huggingface.co/kfkas/Llama-2-ko-7b-Chat) ์˜ ๋ฒ ์ด์Šค๋ชจ๋ธ์ธ [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) ์˜ **GGML** ํฌ๋งท ๋ชจ๋ธ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

---
# ์–‘์žํ™” (Quantization)
์ด Repository ์—๋Š” [llama.cpp](https://github.com/ggerganov/llama.cpp) ์—์„œ ์ œ๊ณตํ•˜๋Š” quantization method ๋ฅผ ์ ์šฉํ•œ q4_0, q4_1, q5_0, q5_1, q8_0 ๋ชจ๋ธ์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ๋ชจ๋ธ์˜ File Size ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. 
| Model| Measure |q4_0|q4_1|q5_0|q5_1|q8_0|f16|
|------|---------|------|------|------|-----|----------|------|
| 7B   |file size|3.9G | 4.3G | 4.7G | 5.2G | 7.2G |13.7G|

---

# Inference Code Example (Python)
๋‹ค์Œ์€ Inference ๋ฅผ ์œ„ํ•œ ๊ฐ„๋‹จํ•œ Example Code ์ž…๋‹ˆ๋‹ค. [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) ๊ทธ๋ฆฌ๊ณ  ์ด Repository ์˜ Llama-2-ko-7b-chat-ggml-q4_0.bin ๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
```python
# llama-cpp-python ์ด ์„ค์น˜๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค๋ฉด ์•„๋ž˜ ์ฃผ์„์„ ํ•ด์ œํ•˜์—ฌ ์„ค์น˜ํ•ฉ๋‹ˆ๋‹ค.
# !pip install llama-cpp-python 

# q4_0 ๋ชจ๋ธ์„ Files ํƒญ์—์„œ ์ง์ ‘ ๋‹ค์šด๋กœ๋“œ ํ•˜๊ฑฐ๋‚˜ ์•„๋ž˜ ์ฃผ์„์„ ํ•ด์ œํ•˜์—ฌ ๋‹ค์šด๋กœ๋“œ ํ•ฉ๋‹ˆ๋‹ค.
# !pip install huggingface_hub #
# from huggingface_hub import hf_hub_download
# hf_hub_download(repo_id='StarFox7/Llama-2-ko-7B-chat-ggml', filename='Llama-2-ko-7B-chat-ggml-q4_0.bin', local_dir='./')

from llama_cpp import Llama

llm = Llama(model_path = 'Llama-2-ko-7B-chat-ggml-q4_0.bin',
            n_ctx=1024,
            # n_gpu_layers=1 #gpu ๊ฐ€์†์„ ์›ํ•˜๋Š” ๊ฒฝ์šฐ ์ฃผ์„์„ ํ•ด์ œํ•˜๊ณ  Metal(Apple M1) ์€ 1, Cuda(Nvidia) ๋Š” Video RAM Size ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ ์ •ํ•œ ์ˆ˜์น˜๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค.
      )
output = llm("Q: ์ธ์ƒ์ด๋ž€ ๋ญ˜๊นŒ์š”?. A: ", max_tokens=1024, stop=["Q:", "\n"], echo=True)
print( output['choices'][0]['text'].replace('โ–',' ') )
#์ถœ๋ ฅ ๊ฒฐ๊ณผ
'''
Q: ์ธ์ƒ์ด๋ž€ ๋ญ˜๊นŒ์š”?. A: 30,000๊ฐœ์˜ ๋ฏธ์ƒ๋ฌผ์ด ์‚ฌ๋Š” ์žฅ ์†์˜ ์„ธ๊ท  ๊ฐ™์€ ๊ฒƒ. 
'''
```
---

> Below is the original model card of the Llama-2 model.

# **Llama 2**
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.

## Model Details
*Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.*

Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.

**Model Developers** Meta

**Variations** Llama 2 comes in a range of parameter sizes โ€” 7B, 13B, and 70B โ€” as well as pretrained and fine-tuned variations.

**Input** Models input text only.

**Output** Models generate text only.

**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.


||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
|Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>|

*Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models -  70B -- use Grouped-Query Attention (GQA) for improved inference scalability.

**Model Dates** Llama 2 was trained between January 2023 and July 2023.

**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.

**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)

**Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288)

## Intended Use
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.

To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212).

**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.

## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.

**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Metaโ€™s sustainability program.

||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|

**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.

## Training Data
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.

**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.

## Evaluation Results

In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.

|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|

**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.

|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|

**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).


|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|

**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.

## Ethical Considerations and Limitations
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2โ€™s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.

Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)

## Reporting Issues
Please report any software โ€œbug,โ€ or other problems with the models through one of the following means:
- Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
- Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
- Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)

## Llama Model Index
|Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf|
|---|---|---|---|---|
|7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)|
|13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)|
|70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|