StarFox7 commited on
Commit
a3ca41d
Β·
1 Parent(s): 927ba1f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +163 -0
README.md CHANGED
@@ -1,3 +1,166 @@
1
  ---
2
  license: llama2
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
+ language:
4
+ - ko
5
  ---
6
+ # Llama-2-ko-7b-ggml
7
+ Llama-2-ko-7b-ggml 은 [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) 의 **GGML** 포맷 λͺ¨λΈμž…λ‹ˆλ‹€.
8
+
9
+ - Llama2 tokenizer 에 [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) μ—μ„œ μ‚¬μš©λœ ν•œκ΅­μ–΄ Additaional Token 을 λ°˜μ˜ν•˜μ—¬ μƒμ„±ν–ˆμŠ΅λ‹ˆλ‹€.
10
+ - **GGML** 포맷 λͺ¨λΈμ€ [llama.cpp](https://github.com/ggerganov/llama.cpp) λ₯Ό μ‚¬μš©ν•˜μ—¬ C/C++ 기반으둜 Inference ν•©λ‹ˆλ‹€.
11
+ - [llama.cpp](https://github.com/ggerganov/llama.cpp) 의 Python Binding νŒ¨ν‚€μ§€μΈ [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) 을 μ‚¬μš©ν•˜λ©΄ python ν™˜κ²½μ—μ„œλ„ Inference κ°€λŠ₯ν•©λ‹ˆλ‹€.
12
+
13
+ 참고둜, [Llama-2-ko-7b-chat-ggml](https://huggingface.co/StarFox7/Llama-2-ko-7B-ggml) μ—μ„œ [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) 에 [nlpai-lab/kullm-v2](https://huggingface.co/datasets/nlpai-lab/kullm-v2) 을 μΆ”κ°€ ν•™μŠ΅ν•œ [Llama-2-ko-7b-chat](https://huggingface.co/kfkas/Llama-2-ko-7b-Chat) 의 **GGML** 포맷 λͺ¨λΈμ„ 찾을 수 μžˆμŠ΅λ‹ˆλ‹€.
14
+
15
+ ---
16
+ # μ–‘μžν™” (Quantization)
17
+ 이 Repository μ—λŠ” [llama.cpp](https://github.com/ggerganov/llama.cpp) μ—μ„œ μ œκ³΅ν•˜λŠ” quantization method λ₯Ό μ μš©ν•œ f16, q4_0, q4_1, q5_0, q5_1, q8_0 λͺ¨λΈμ„ ν¬ν•¨ν•©λ‹ˆλ‹€. 각 λͺ¨λΈμ˜ File Size λŠ” λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€.
18
+ | Model| Measure |q4_0|q4_1|q5_0|q5_1|q8_0|f16|f32|
19
+ |------|---------|------|------|------|-----|----------|------|-------------|
20
+ | 7B |file size|3.9G | 4.3G | 4.7G | 5.2G | 7.2G |13.5G|27.4G|
21
+
22
+ ---
23
+
24
+ # Inference Code Example (Python)
25
+ λ‹€μŒμ€ Inference λ₯Ό μœ„ν•œ κ°„λ‹¨ν•œ Example Code μž…λ‹ˆλ‹€. [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) 그리고 이 Repository 의 Llama-2-ko-7b-ggml-q4_0.bin κ°€ ν•„μš”ν•©λ‹ˆλ‹€.
26
+ ```python
27
+ from llama_cpp import Llama
28
+
29
+ llm = Llama(model_path = 'Llama-2-ko-7b-ggml-q4_0.bin',
30
+ n_ctx=1024)
31
+
32
+ output = llm("Q: 인생에 λŒ€ν•΄μ„œ μ„€λͺ…ν•˜μ‹œμ˜€. A: ", max_tokens=1024, stop=["Q:", "\n"], echo=True)
33
+
34
+ print( output['choices'][0]['text'].replace('▁',' ') )
35
+
36
+ #좜λ ₯ κ²°κ³Ό
37
+ '''
38
+ Q: 인생에 λŒ€ν•΄μ„œ μ„€λͺ…ν•˜μ‹œμ˜€.
39
+ A: 20λŒ€μ—λŠ” λͺ¨λ“  것을 ν•  수 μžˆλŠ” μ‹œκΈ°λ‘œ, μžμ‹ μ΄ ν•˜κ³  싢은 일과 ν•˜κ³  싢은 곡뢀λ₯Ό 선택해 곡뢀할 수 있고 μžμ‹ μ΄ 이루고 싢은 것듀을 μ„±μ·¨ν•˜κ³  κΏˆκΏ€ 수 μžˆλŠ” μ‹œκΈ°λΌκ³  μƒκ°ν–ˆμŠ΅λ‹ˆλ‹€.
40
+ μ΄λŸ¬ν•œ 이유둜 20λŒ€μ˜ μ €λ₯Ό μ„€λͺ…ν•˜λΌκ³  ν•œλ‹€λ©΄ '꿈이 λ§Žμ€ μ Šμ€μ΄'κ°€ κ°€μž₯ μ–΄μšΈλ¦΄ λ“―ν•©λ‹ˆλ‹€. 어렸을 λ•ŒλŠ” 마λƒ₯ μ–΄λ₯Έμ΄ 되고 μ‹Άμ—ˆκ³ , 쀑학생 λ•Œμ—λŠ” 빨리 고등학ꡐ에 μ˜¬λΌκ°€κ³  μ‹Άμ—ˆμŠ΅λ‹ˆλ‹€.
41
+ 고등학ꡐ에 μ˜¬λΌκ°€μ„œλ„ μ €λŠ” λŒ€ν•™μ— μ§„ν•™ν•˜κ³  싢은 λ§ˆμŒμ— 곡뢀λ₯Ό μ—΄μ‹¬νžˆ ν•˜μ˜€μŠ΅λ‹ˆλ‹€. λŒ€ν•™μ— μž…ν•™ν•œ 후에도 μ €μ˜ κ³΅λΆ€λŠ” κ³„μ†λ˜μ—ˆμŠ΅λ‹ˆλ‹€. ν•˜μ§€λ§Œ 2ν•™λ…„ 정도 λ˜μ—ˆμ„ λ•Œ,
42
+ 'λ‚΄κ°€ ν•˜κ³  μžˆλŠ” 것이 정말 λ‚΄κ°€ ν•˜κ³  싢은 일일까?' λΌλŠ” 생각이 λ“€κΈ° μ‹œμž‘ν–ˆμŠ΅λ‹ˆλ‹€. 이런 κ³ λ―Ό 끝에 μ €λŠ” 방황을 ν•˜μ˜€κ³  κ²°κ΅­ μ œκ°€ 정말 μ›ν•˜λŠ” 일이 무엇인지 λͺ°λžκΈ° λ•Œλ¬Έμ— 학ꡐλ₯Ό κ·Έλ§Œλ‘κΈ°λ‘œ κ²°μ‹¬ν•˜κ²Œ λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
43
+ μ €λŠ” μΈμƒμ˜ λͺ©ν‘œλŠ” 행볡이라고 μƒκ°ν–ˆκ³ , ν–‰λ³΅ν•œ 삢을 μ‚΄κΈ° μœ„ν•΄ λͺ¨λ“  것을 ν•  수 μžˆλ‹€λŠ” 20λŒ€μ— μ œκ°€ ν•˜κ³  μ‹Άμ—ˆλ˜ 일을 선택해 제 μžμ‹ μ„ λ°œμ „μ‹œν‚€κ³  μ„±μ·¨ν•΄κ°€λ©° κΏˆμ„ 이루렀고 ν•˜μ˜€μŠ΅λ‹ˆλ‹€.
44
+ κ·Έλž˜μ„œ μ €λŠ” 'λ‚΄κ°€ ν•˜κ³  싢은 일과 λ‚΄κ°€ 잘 ν•  수 μžˆλŠ” 일'을 μ°ΎκΈ° μœ„ν•΄ μ—¬λŸ¬ 곳을 λ‘˜λŸ¬λ³΄κ³  κ²½ν—˜ν•˜μ˜€μŠ΅λ‹ˆλ‹€. μ—¬λŸ¬ 곳을 λ‘˜λŸ¬λ³΄λ‹€ λ³΄λ‹ˆ μ €λŠ” μžμ‹ μ΄ ν•˜κ³  싢은 일을 μ°Ύμ•„λ‚΄κ³ , 잘 ν•  수 μžˆλ‹€λŠ” μžμ‹ κ°μ„ κ°€μ§€κ²Œ λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
45
+ κ·Έ ν›„ μ €λŠ” μ œκ°€ μ’‹μ•„ν•˜λŠ” 것을 μ°Ύκ³  μ„±μ·¨ν•΄κ°€λ©° κΏˆμ„ 이루기 μœ„ν•΄ λ…Έλ ₯ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
46
+ '''
47
+ ```
48
+ ---
49
+
50
+ > Below is the original model card of the Llama-2 model.
51
+
52
+ # **Llama 2**
53
+ Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
54
+
55
+ ## Model Details
56
+ *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.*
57
+
58
+ Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
59
+
60
+ **Model Developers** Meta
61
+
62
+ **Variations** Llama 2 comes in a range of parameter sizes β€” 7B, 13B, and 70B β€” as well as pretrained and fine-tuned variations.
63
+
64
+ **Input** Models input text only.
65
+
66
+ **Output** Models generate text only.
67
+
68
+ **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
69
+
70
+
71
+ ||Training Data|Params|Content Length|GQA|Tokens|LR|
72
+ |---|---|---|---|---|---|---|
73
+ |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>|
74
+ |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>|
75
+ |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>|
76
+
77
+ *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability.
78
+
79
+ **Model Dates** Llama 2 was trained between January 2023 and July 2023.
80
+
81
+ **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
82
+
83
+ **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
84
+
85
+ **Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288)
86
+
87
+ ## Intended Use
88
+ **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
89
+
90
+ To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212).
91
+
92
+ **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
93
+
94
+ ## Hardware and Software
95
+ **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
96
+
97
+ **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
98
+
99
+ ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
100
+ |---|---|---|---|
101
+ |Llama 2 7B|184320|400|31.22|
102
+ |Llama 2 13B|368640|400|62.44|
103
+ |Llama 2 70B|1720320|400|291.42|
104
+ |Total|3311616||539.00|
105
+
106
+ **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
107
+
108
+ ## Training Data
109
+ **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
110
+
111
+ **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
112
+
113
+ ## Evaluation Results
114
+
115
+ In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.
116
+
117
+ |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
118
+ |---|---|---|---|---|---|---|---|---|---|
119
+ |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
120
+ |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
121
+ |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
122
+ |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
123
+ |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
124
+ |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
125
+ |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
126
+
127
+ **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
128
+
129
+ |||TruthfulQA|Toxigen|
130
+ |---|---|---|---|
131
+ |Llama 1|7B|27.42|23.00|
132
+ |Llama 1|13B|41.74|23.08|
133
+ |Llama 1|33B|44.19|22.57|
134
+ |Llama 1|65B|48.71|21.77|
135
+ |Llama 2|7B|33.29|**21.25**|
136
+ |Llama 2|13B|41.86|26.10|
137
+ |Llama 2|70B|**50.18**|24.60|
138
+
139
+ **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
140
+
141
+
142
+ |||TruthfulQA|Toxigen|
143
+ |---|---|---|---|
144
+ |Llama-2-Chat|7B|57.04|**0.00**|
145
+ |Llama-2-Chat|13B|62.18|**0.00**|
146
+ |Llama-2-Chat|70B|**64.14**|0.01|
147
+
148
+ **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
149
+
150
+ ## Ethical Considerations and Limitations
151
+ Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
152
+
153
+ Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)
154
+
155
+ ## Reporting Issues
156
+ Please report any software β€œbug,” or other problems with the models through one of the following means:
157
+ - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
158
+ - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
159
+ - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
160
+
161
+ ## Llama Model Index
162
+ |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf|
163
+ |---|---|---|---|---|
164
+ |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)|
165
+ |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)|
166
+ |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|