File size: 2,000 Bytes
f81d701 fd4d9bc f81d701 fd4d9bc f81d701 fd4d9bc f81d701 fd4d9bc f81d701 fd4d9bc f81d701 fd4d9bc f81d701 fd4d9bc f81d701 fd4d9bc 170f284 fd4d9bc 170f284 fd4d9bc 170f284 fd4d9bc 170f284 fd4d9bc 170f284 fd4d9bc 170f284 fd4d9bc 170f284 fd4d9bc f81d701 fd4d9bc f81d701 fd4d9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
tags:
- llm
- Large Language Model
- llama3
- ORPO
- ORPO β
license: apache-2.0
datasets:
- heegyu/hh-rlhf-ko
language:
- ko
---
# Model Card for llama3-8b-instruct-orpo-ko
## Model Summary
This model is a fine-tuned version of the meta-llama/Meta-Llama-3-8B-Instruct using the [odds ratio preference optimization (ORPO)](https://arxiv.org/abs/2403.07691).
It has been trained to perform NLP tasks in Korean.
## Model Details
### Model Description
- **Developed by:** Sungjoo Byun (Grace Byun)
- **Language(s) (NLP):** Korean
- **License:** Apache 2.0
- **Finetuned from model:** meta-llama/Meta-Llama-3-8B-Instruct
## Training Details
### Training Data
The model was trained using the dataset [heegyu/hh-rlhf-ko](https://huggingface.co/datasets/heegyu/hh-rlhf-ko). We appreciate heegyu for sharing this valuable resource.
### Training Procedure
We applied ORPO β to llama3-8b-instruct. The training was conducted on an A100 GPU with 80GB of memory.
## How to Get Started with the Model
Use the code below to get started with the model:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("SungJoo/llama3-8b-instruct-orpo-ko")
model = AutoModelForCausalLM.from_pretrained("SungJoo/llama3-8b-instruct-orpo-ko")
```
## Citations
Please cite the ORPO paper and our model as follows:
```bibtex
@misc{hong2024orpo,
title={ORPO: Monolithic Preference Optimization without Reference Model},
author={Jiwoo Hong and Noah Lee and James Thorne},
year={2024},
eprint={2403.07691},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtex
@misc{byun,
author = {Sungjoo Byun},
title = {llama3-8b-orpo-ko},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
howpublished = {\url{https://huggingface.co/SungJoo/llama3-8b-instruct-orpo-ko}}
}
```
## Contact
For any questions or issues, please contact [email protected]. |