Lunar-Landing-PPO / config.json
SuperSecureHuman's picture
First Trained PPO lunar agent
35eeff1
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8736b5a680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8736b5a710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8736b5a7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8736b5a830>", "_build": "<function ActorCriticPolicy._build at 0x7f8736b5a8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8736b5a950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8736b5a9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8736b5aa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8736b5ab00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8736b5ab90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8736b5ac20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8736b96f30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651671284.5578203, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAQsb32fFy6brOSuk17hbU7CFy6ZJimOQAAgD8AAIA/mrCvPFwnQrrQkdY2bxiSMYLfgbsjzvy1AACAPwAAgD8Ay/C8e4Saur5wyruK/t03NVABO7WRFbcAAIA/AACAP7NDLz6FK7c4NySwO1SnpTy8XoI73CC1OwAAgD8AAIA/Uz4QPntWibpLo7E5nBjhNTyBUzsSSsu4AACAPwAAgD/2Dni+gLAHPzyVtz2RT4K+3C+rvLY0Er0AAAAAAAAAADMX7L2U+/U+VjUAPu7mQr4j3eM8OdURvAAAAAAAAAAAgFR4PSm4NLolcI85IkmMNC1evTo2PKi4AACAPwAAgD/ALZc9V+OUPiyWs71c52a+0z/jPF+8Ir0AAAAAAAAAAMYBS74FKLY8wp/oPPIASTzgg6q+mXqWPQAAgD8AAIA/uiwLPimqazsnQzG7Y1pruWFjCT3oWFO6AACAPwAAgD8GiAE+7GmqufgBibdfwNSzhVeWOyK0oTYAAIA/AACAPzMaIr33RIU/1vGCPRuqpL7vKRA8gnu9PAAAAAAAAAAAM4eFPRTUn7pKeyC4W3s1NdZNXzk5Jjc3AACAPwAAgD8NBZi9j6opuovOHzgGxJ8zh+0SO56IOrcAAIA/AACAP8Cf6D1I/5C6g2J/OrfdnzZde7Q68X+NuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7rPKTOkTYECUhpRSlIwBbJRN6AOMAXSUR0CQx3Dxb0OFdX2UKGgGaAloD0MI3C3JAbtLY0CUhpRSlGgVTegDaBZHQJDHkRoRIz51fZQoaAZoCWgPQwgNHNDSFTRkQJSGlFKUaBVN6ANoFkdAkNwYXj2i+XV9lChoBmgJaA9DCKCmlq112WJAlIaUUpRoFU3oA2gWR0CQ3a3QUpNLdX2UKGgGaAloD0MIi6iJPh/NXkCUhpRSlGgVTegDaBZHQJDeLArQPZt1fZQoaAZoCWgPQwg8FAX6ROpkQJSGlFKUaBVN6ANoFkdAkOAh0+1SfnV9lChoBmgJaA9DCJBJRs7CO2RAlIaUUpRoFU3oA2gWR0CQ6BayKNyYdX2UKGgGaAloD0MI3CkdrH/RYkCUhpRSlGgVTegDaBZHQJDotbqyGBZ1fZQoaAZoCWgPQwi9qN2vAihcQJSGlFKUaBVN6ANoFkdAkPDLiuMdcXV9lChoBmgJaA9DCA9HV+nu92RAlIaUUpRoFU3oA2gWR0CQ9fj7yhBadX2UKGgGaAloD0MIq7NaYI+xK0CUhpRSlGgVTUcBaBZHQJD30uyu6mR1fZQoaAZoCWgPQwgtYAK37rI9QJSGlFKUaBVNUgFoFkdAkPhFWjoIOnV9lChoBmgJaA9DCDDVzFoKnmFAlIaUUpRoFU3oA2gWR0CQ/ZTGYKIBdX2UKGgGaAloD0MIDMhe737DYECUhpRSlGgVTegDaBZHQJEHlZEDyOJ1fZQoaAZoCWgPQwiwPbMkQHZjQJSGlFKUaBVN6ANoFkdAkQuRI4EOiHV9lChoBmgJaA9DCHoX78dtbmVAlIaUUpRoFU3oA2gWR0CRDqE3sHB2dX2UKGgGaAloD0MI/P1itmRuW0CUhpRSlGgVTegDaBZHQJERXTuv2Xd1fZQoaAZoCWgPQwiASSpTzF5eQJSGlFKUaBVN6ANoFkdAkRg4rSVnmXV9lChoBmgJaA9DCBReglMf4VpAlIaUUpRoFU3oA2gWR0CRGkOYIBzWdX2UKGgGaAloD0MIZ9E7FXDQY0CUhpRSlGgVTegDaBZHQJEaZRsMy8B1fZQoaAZoCWgPQwgGZoUi3c8JwJSGlFKUaBVNJAFoFkdAkSw8g6ltTHV9lChoBmgJaA9DCA0Zj1KJ4WpAlIaUUpRoFU1rAmgWR0CRLcsP8Q7LdX2UKGgGaAloD0MIpRZKJiemYECUhpRSlGgVTegDaBZHQJEweIyj59F1fZQoaAZoCWgPQwh6bTZWYj1jQJSGlFKUaBVN6ANoFkdAkeRP0dzXBnV9lChoBmgJaA9DCIHqH0QyHGJAlIaUUpRoFU3oA2gWR0CR699WZJCjdX2UKGgGaAloD0MIie/ErJfhYECUhpRSlGgVTegDaBZHQJHsftCzC1t1fZQoaAZoCWgPQwgf8parH2BgQJSGlFKUaBVN6ANoFkdAkfV5yU9py3V9lChoBmgJaA9DCKQXtftVAOY/lIaUUpRoFUv6aBZHQJH4Ov8qFyt1fZQoaAZoCWgPQwi1UgjkEqphQJSGlFKUaBVN6ANoFkdAkfqG78Nx2nV9lChoBmgJaA9DCC0Kuyj6AWBAlIaUUpRoFU3oA2gWR0CR/NjlxOtXdX2UKGgGaAloD0MIfSHkvH/UYkCUhpRSlGgVTegDaBZHQJIDbQY1pCd1fZQoaAZoCWgPQwhGQIUjSL5mQJSGlFKUaBVNrgFoFkdAkgQR5xBE8nV9lChoBmgJaA9DCPTg7qzdaEVAlIaUUpRoFUvKaBZHQJIL0EKVpsZ1fZQoaAZoCWgPQwjWkLjH0mMwwJSGlFKUaBVL6WgWR0CSC/gbp/wzdX2UKGgGaAloD0MI31LOF/vdYUCUhpRSlGgVTegDaBZHQJIN++RHPNV1fZQoaAZoCWgPQwiAKJgxBUVeQJSGlFKUaBVN6ANoFkdAkhEN52QnyHV9lChoBmgJaA9DCOdSXFX2ATxAlIaUUpRoFUvRaBZHQJITURDkU9J1fZQoaAZoCWgPQwhLzLOS1rNiQJSGlFKUaBVN6ANoFkdAkhOwaisXBXV9lChoBmgJaA9DCKabxCCwyj9AlIaUUpRoFU0gAWgWR0CSE9uaF23bdX2UKGgGaAloD0MIrkUL0LbrYUCUhpRSlGgVTegDaBZHQJIYQ+r2g391fZQoaAZoCWgPQwg2Ia0x6M1bQJSGlFKUaBVN6ANoFkdAkhmnlXA/LXV9lChoBmgJaA9DCM138BMHYV1AlIaUUpRoFU3oA2gWR0CSGcSNwR5DdX2UKGgGaAloD0MIl8gFZ/AJRECUhpRSlGgVTSUBaBZHQJIf0dilSCR1fZQoaAZoCWgPQwgR5KCEmTZiQJSGlFKUaBVN6ANoFkdAkieV1nuiOHV9lChoBmgJaA9DCHB6F+/HKWFAlIaUUpRoFU3oA2gWR0CSKNsq8UVSdX2UKGgGaAloD0MIWrvtQvMEcECUhpRSlGgVTVgCaBZHQJI0lORDCxh1fZQoaAZoCWgPQwir6A/NPLRmQJSGlFKUaBVN6ANoFkdAkjXeoUBXCHV9lChoBmgJaA9DCPim6bODsWBAlIaUUpRoFU3oA2gWR0CSNm5p8F6idX2UKGgGaAloD0MIBaInZVIDY0CUhpRSlGgVTegDaBZHQJI+nYukDZF1fZQoaAZoCWgPQwgbutkfqNhiQJSGlFKUaBVN6ANoFkdAkkv/Uaya/nV9lChoBmgJaA9DCMhCdAgc1VtAlIaUUpRoFU3oA2gWR0CSVAVLSNOudX2UKGgGaAloD0MISuza3m44YkCUhpRSlGgVTegDaBZHQJJZTpfQa751fZQoaAZoCWgPQwh0CBwJNONhQJSGlFKUaBVN6ANoFkdAkluhMWXTmXV9lChoBmgJaA9DCMmOjUC8OWJAlIaUUpRoFU3oA2gWR0CSXAb212JSdX2UKGgGaAloD0MI1lbsL7saYECUhpRSlGgVTegDaBZHQJJcPfMwDeV1fZQoaAZoCWgPQwgD0Chdet9lQJSGlFKUaBVN6ANoFkdAkmFUs8PnS3V9lChoBmgJaA9DCASsVbumiG5AlIaUUpRoFU15A2gWR0CSYj0bcXWOdX2UKGgGaAloD0MICyb+KOrGYUCUhpRSlGgVTegDaBZHQJJi+ozeoDR1fZQoaAZoCWgPQwjSN2kaFDJeQJSGlFKUaBVN6ANoFkdAkmMVLOAy23V9lChoBmgJaA9DCBFTIolegkhAlIaUUpRoFUuraBZHQJJmv9MsYl91fZQoaAZoCWgPQwiafLPNDeZhQJSGlFKUaBVN6ANoFkdAknCxib2DhHV9lChoBmgJaA9DCD4EVaPXUGJAlIaUUpRoFU3oA2gWR0CScho99tuUdX2UKGgGaAloD0MIZCKl2TxtbUCUhpRSlGgVTUoDaBZHQJJyQpmVZ9x1fZQoaAZoCWgPQwjqPZXTHnJjQJSGlFKUaBVN6ANoFkdAkxipT6zmfXV9lChoBmgJaA9DCLaizXHutGZAlIaUUpRoFU3oA2gWR0CTGUk5IYm+dX2UKGgGaAloD0MIQ5Hu55QqYkCUhpRSlGgVTegDaBZHQJMhOvpyIYZ1fZQoaAZoCWgPQwi8s3bbhQpvQJSGlFKUaBVN7wJoFkdAkyom03Ov+3V9lChoBmgJaA9DCOdyg6GOn2NAlIaUUpRoFU3oA2gWR0CTLPre67NCdX2UKGgGaAloD0MI51Hxf0fLYkCUhpRSlGgVTegDaBZHQJMzyO5rgwZ1fZQoaAZoCWgPQwhvYkhOpgZgQJSGlFKUaBVN6ANoFkdAkzick+otMHV9lChoBmgJaA9DCPDd5o0TTGBAlIaUUpRoFU3oA2gWR0CTO0u9eyAydX2UKGgGaAloD0MILbMIxVYATECUhpRSlGgVTegDaBZHQJNAnHBDXvp1fZQoaAZoCWgPQwhHrTB9L+1iQJSGlFKUaBVN6ANoFkdAk0GCyUs4DXV9lChoBmgJaA9DCH11VaAWrmRAlIaUUpRoFU3oA2gWR0CTQlzmfXf7dX2UKGgGaAloD0MI4s0avK+LXECUhpRSlGgVTegDaBZHQJNCekM1CPZ1fZQoaAZoCWgPQwjObcK9Mi9iQJSGlFKUaBVN6ANoFkdAk0XBKUVzqHV9lChoBmgJaA9DCIC1ateEKWFAlIaUUpRoFU3oA2gWR0CTTyDA8B+4dX2UKGgGaAloD0MI2bW93RIeZ0CUhpRSlGgVTegDaBZHQJNQZQfp2U11fZQoaAZoCWgPQwi5UzpYfwZjQJSGlFKUaBVN6ANoFkdAk1CIzeoDPnV9lChoBmgJaA9DCDsA4q5eHmdAlIaUUpRoFU3oA2gWR0CTXUQ1aW5ZdX2UKGgGaAloD0MIxR7ax4r3YECUhpRSlGgVTegDaBZHQJNd4pSaVlh1fZQoaAZoCWgPQwgeozzzcudhQJSGlFKUaBVN6ANoFkdAk2WU34sVcnV9lChoBmgJaA9DCBnHSPYI1mVAlIaUUpRoFU3oA2gWR0CTb0VsDW9UdX2UKGgGaAloD0MIyxKdZRZJJkCUhpRSlGgVTQkBaBZHQJNw519v0iB1fZQoaAZoCWgPQwjBNuLJ7uFkQJSGlFKUaBVN6ANoFkdAk3JGBOHnEHV9lChoBmgJaA9DCKPlQA+1zSVAlIaUUpRoFUu5aBZHQJNzmPNmlIp1fZQoaAZoCWgPQwi2SxsOSzJjQJSGlFKUaBVN6ANoFkdAk3nFRLsa9HV9lChoBmgJaA9DCFBR9Sud93BAlIaUUpRoFU3YA2gWR0CTfdwo9cKPdX2UKGgGaAloD0MIx/Za0DtFcUCUhpRSlGgVTXwDaBZHQJOCEWdmQKd1fZQoaAZoCWgPQwh/+Pnvwd9gQJSGlFKUaBVN6ANoFkdAk4Ib655JLHV9lChoBmgJaA9DCAnh0cYRywDAlIaUUpRoFUvYaBZHQJODkjFAE+x1fZQoaAZoCWgPQwjrcHSVbhBhQJSGlFKUaBVN6ANoFkdAk4hb6Hj6vnV9lChoBmgJaA9DCGtmLQWkwFlAlIaUUpRoFU3oA2gWR0CTiVXpnpSrdX2UKGgGaAloD0MIo8haQ6k7ZkCUhpRSlGgVTegDaBZHQJOKIV58jRl1fZQoaAZoCWgPQwggtvRoqpheQJSGlFKUaBVN6ANoFkdAk43cH0K7ZnV9lChoBmgJaA9DCNJwytx8I8Q/lIaUUpRoFUusaBZHQJOP90dRzil1fZQoaAZoCWgPQwg8pBgg0dZdQJSGlFKUaBVN6ANoFkdAk5gIJiRW93V9lChoBmgJaA9DCB8tzhhmY2RAlIaUUpRoFU3oA2gWR0CTmWzWPLgXdX2UKGgGaAloD0MIcXZrmYyrZUCUhpRSlGgVTegDaBZHQJOZkc3l0YF1fZQoaAZoCWgPQwgSvYxiuW1vQJSGlFKUaBVNMAFoFkdAk51Z1mrbQHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}