File size: 6,749 Bytes
c46d188 f656ca7 b8b6760 f656ca7 b8b6760 c46d188 b8b6760 c46d188 e1c2ebd c46d188 e1c2ebd c46d188 b8b6760 c46d188 b8b6760 c46d188 b8b6760 c46d188 b8b6760 c46d188 b8b6760 c46d188 b8b6760 c46d188 b8b6760 c46d188 e1c2ebd b8b6760 c46d188 b8b6760 c46d188 b8b6760 c46d188 e1c2ebd c46d188 b8b6760 c46d188 b8b6760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
language:
- ln
- en
- fr
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: CohereForAI/aya-23-8b
datasets:
- masakhane/afrimmlu
model-index:
- name: aya-23-8b-afrimmlu-lin
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Aya-23-8b Afrimmlu Lingala
This model is a fine-tuned version of [CohereForAI/aya-23-8b](https://huggingface.co/CohereForAI/aya-23-8b) on [Masakhane/afrimmlu](https://huggingface.co/datasets/masakhane/afrimmlu/).
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
## Prompt Formating
```py
def formatting_prompts_func(example):
output_texts = []
for i in range(len(example['choices'])):
text = f"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>Question : {example['question'][i]}, Choices : {example['choices'][i]}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{example['answer'][i]}"
output_texts.append(text)
return output_texts
```
## Model Architecture
```txt
PeftModelForCausalLM(
(base_model): LoraModel(
(model): CohereForCausalLM(
(model): CohereModel(
(embed_tokens): Embedding(256000, 4096, padding_idx=0)
(layers): ModuleList(
(0-31): 32 x CohereDecoderLayer(
(self_attn): CohereAttention(
(q_proj): lora.Linear4bit(
(base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
(lora_dropout): ModuleDict(
(default): Identity()
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=32, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=32, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(k_proj): lora.Linear4bit(
(base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
(lora_dropout): ModuleDict(
(default): Identity()
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=32, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=32, out_features=1024, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(v_proj): lora.Linear4bit(
(base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
(lora_dropout): ModuleDict(
(default): Identity()
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=32, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=32, out_features=1024, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(o_proj): lora.Linear4bit(
(base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
(lora_dropout): ModuleDict(
(default): Identity()
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=32, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=32, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
(rotary_emb): CohereRotaryEmbedding()
)
(mlp): CohereMLP(
(gate_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
(up_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
(down_proj): Linear4bit(in_features=14336, out_features=4096, bias=False)
(act_fn): SiLU()
)
(input_layernorm): CohereLayerNorm()
)
)
(norm): CohereLayerNorm()
)
(lm_head): Linear(in_features=4096, out_features=256000, bias=False)
)
)
)
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20
### Training results
## Inferennce
```py
quantization_config = None
if QUANTIZE_4BIT:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
attn_implementation = None
if USE_FLASH_ATTENTION:
attn_implementation="flash_attention_2"
loaded_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_NAME,
quantization_config=quantization_config,
attn_implementation=attn_implementation,
torch_dtype=torch.bfloat16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
loaded_model.load_adapter("aya-23-8b-afrimmlu-lin")
prompts = [
"""Question : Kati ya kondima mibale elandi, oyo wapi ezali nyoso mibale ya solo (na 2019) ?
Choices : ['Bato bazali na mposa ya kozala optimiste mpo na mikolo ekoya ya bomoi na bango na mpe na makambo ekoya ya ekolo na bango to mokili.', 'Bato bazali na mposa ya kozala optimiste mpo na mikolo ekoya ya bomoi na bango moko, kasi pessimiste na mikolo ekoya ya Ekolo na bango to mokili.', 'Bato bazali na mposa ya kozala pessimiste mpo na mikolo ekoya ya bomoi na bango, kasi optimiste na mikolo ekoya ya ekolo na bango to mokili.', 'Bato bazali na mposa ya kozala pessimiste mpo na mikolo ekoya ya bomoi na bango na mpe mikolo ekoya ya ekolo na bango to mokili.']
"""
]
generations = generate_aya_23(prompts, loaded_model)
for p, g in zip(prompts, generations):
print(
"PROMPT", p ,"RESPONSE", g, "\n", sep="\n"
)
```
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.0+cu118
- Datasets 2.19.2
- Tokenizers 0.19.1 |