File size: 6,749 Bytes
c46d188
f656ca7
 
 
 
b8b6760
 
 
 
 
 
f656ca7
 
b8b6760
 
 
c46d188
 
b8b6760
 
c46d188
e1c2ebd
c46d188
e1c2ebd
c46d188
b8b6760
c46d188
b8b6760
c46d188
b8b6760
c46d188
b8b6760
c46d188
b8b6760
c46d188
b8b6760
c46d188
b8b6760
c46d188
e1c2ebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8b6760
c46d188
b8b6760
 
 
 
 
 
 
 
 
 
 
c46d188
b8b6760
c46d188
 
e1c2ebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c46d188
b8b6760
c46d188
b8b6760
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
language:
- ln
- en
- fr
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: CohereForAI/aya-23-8b
datasets:
- masakhane/afrimmlu
model-index:
- name: aya-23-8b-afrimmlu-lin
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Aya-23-8b Afrimmlu Lingala

This model is a fine-tuned version of [CohereForAI/aya-23-8b](https://huggingface.co/CohereForAI/aya-23-8b) on [Masakhane/afrimmlu](https://huggingface.co/datasets/masakhane/afrimmlu/).

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

## Prompt Formating
```py
def formatting_prompts_func(example):
    output_texts = []
    for i in range(len(example['choices'])):
        text = f"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>Question : {example['question'][i]}, Choices : {example['choices'][i]}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{example['answer'][i]}"
        output_texts.append(text)
    return output_texts
```

## Model Architecture

```txt
PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): CohereForCausalLM(
      (model): CohereModel(
        (embed_tokens): Embedding(256000, 4096, padding_idx=0)
        (layers): ModuleList(
          (0-31): 32 x CohereDecoderLayer(
            (self_attn): CohereAttention(
              (q_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=4096, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (k_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=1024, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (v_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=1024, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (o_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Identity()
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=4096, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (rotary_emb): CohereRotaryEmbedding()
            )
            (mlp): CohereMLP(
              (gate_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
              (up_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
              (down_proj): Linear4bit(in_features=14336, out_features=4096, bias=False)
              (act_fn): SiLU()
            )
            (input_layernorm): CohereLayerNorm()
          )
        )
        (norm): CohereLayerNorm()
      )
      (lm_head): Linear(in_features=4096, out_features=256000, bias=False)
    )
  )
)
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20

### Training results


## Inferennce

```py
quantization_config = None
if QUANTIZE_4BIT:
  quantization_config = BitsAndBytesConfig(
      load_in_4bit=True,
      bnb_4bit_quant_type="nf4",
      bnb_4bit_use_double_quant=True,
      bnb_4bit_compute_dtype=torch.bfloat16,
  )

attn_implementation = None
if USE_FLASH_ATTENTION:
  attn_implementation="flash_attention_2"

loaded_model = AutoModelForCausalLM.from_pretrained(
          BASE_MODEL_NAME,
          quantization_config=quantization_config,
          attn_implementation=attn_implementation,
          torch_dtype=torch.bfloat16,
          device_map="auto",
        )
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
loaded_model.load_adapter("aya-23-8b-afrimmlu-lin")


prompts = [
  """Question : Kati ya kondima mibale elandi, oyo wapi ezali nyoso mibale ya solo (na 2019) ?
    Choices : ['Bato bazali na mposa ya kozala optimiste mpo na mikolo ekoya ya bomoi na bango na mpe na makambo ekoya ya ekolo na bango to mokili.', 'Bato bazali na mposa ya kozala optimiste mpo na mikolo ekoya ya bomoi na bango moko, kasi pessimiste na mikolo ekoya ya Ekolo na bango to mokili.', 'Bato bazali na mposa ya kozala pessimiste mpo na mikolo ekoya ya bomoi na bango, kasi optimiste na mikolo ekoya ya ekolo na bango to mokili.', 'Bato bazali na mposa ya kozala pessimiste mpo na mikolo ekoya ya bomoi na bango na mpe mikolo ekoya ya ekolo na bango to mokili.']
  """
]

generations = generate_aya_23(prompts, loaded_model)

for p, g in zip(prompts, generations):
  print(
      "PROMPT", p ,"RESPONSE", g, "\n", sep="\n"
    )


```

### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.0+cu118
- Datasets 2.19.2
- Tokenizers 0.19.1