Upload modeling_esm_plusplus.py with huggingface_hub
Browse files- modeling_esm_plusplus.py +1076 -1076
modeling_esm_plusplus.py
CHANGED
@@ -1,1076 +1,1076 @@
|
|
1 |
-
"""
|
2 |
-
ESM++ model implementation.
|
3 |
-
|
4 |
-
ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility
|
5 |
-
The ESM Python package is not required
|
6 |
-
|
7 |
-
Modified from https://github.com/evolutionaryscale/esm
|
8 |
-
License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement
|
9 |
-
"""
|
10 |
-
|
11 |
-
import math
|
12 |
-
import os
|
13 |
-
import torch
|
14 |
-
import torch.nn as nn
|
15 |
-
import torch.nn.functional as F
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from functools import cache, partial
|
18 |
-
from pathlib import Path
|
19 |
-
from typing import Optional, Tuple, Union
|
20 |
-
from einops import rearrange, repeat
|
21 |
-
from huggingface_hub import snapshot_download
|
22 |
-
from tokenizers import Tokenizer
|
23 |
-
from tokenizers.models import BPE
|
24 |
-
from tokenizers.processors import TemplateProcessing
|
25 |
-
from torch.utils.data import Dataset, DataLoader
|
26 |
-
from tqdm.auto import tqdm
|
27 |
-
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig
|
28 |
-
from transformers.modeling_outputs import ModelOutput
|
29 |
-
|
30 |
-
|
31 |
-
class ESMplusplusConfig(PretrainedConfig):
|
32 |
-
"""Configuration class for ESM++ model.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
vocab_size: Size of the vocabulary
|
36 |
-
hidden_size: Dimension of hidden layers
|
37 |
-
num_attention_heads: Number of attention heads
|
38 |
-
num_hidden_layers: Number of transformer layers
|
39 |
-
num_labels: Number of output labels for classification
|
40 |
-
problem_type: Type of problem - regression, single/multi label classification
|
41 |
-
"""
|
42 |
-
model_type = "ESMplusplus"
|
43 |
-
def __init__(
|
44 |
-
self,
|
45 |
-
vocab_size: int = 64,
|
46 |
-
hidden_size: int = 960,
|
47 |
-
num_attention_heads: int = 15,
|
48 |
-
num_hidden_layers: int = 30,
|
49 |
-
num_labels: int = 2,
|
50 |
-
problem_type: str | None = None,
|
51 |
-
dropout: float = 0.0,
|
52 |
-
initializer_range: float = 0.02,
|
53 |
-
**kwargs,
|
54 |
-
):
|
55 |
-
super().__init__(**kwargs)
|
56 |
-
self.vocab_size = vocab_size
|
57 |
-
self.hidden_size = hidden_size
|
58 |
-
self.num_attention_heads = num_attention_heads
|
59 |
-
self.num_hidden_layers = num_hidden_layers
|
60 |
-
self.num_labels = num_labels
|
61 |
-
self.problem_type = problem_type
|
62 |
-
self.dropout = dropout
|
63 |
-
self.initializer_range = initializer_range
|
64 |
-
|
65 |
-
|
66 |
-
### Rotary Embeddings
|
67 |
-
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
|
68 |
-
"""Rotates half the hidden dims of the input."""
|
69 |
-
if not interleaved:
|
70 |
-
x1, x2 = x.chunk(2, dim=-1)
|
71 |
-
return torch.cat((-x2, x1), dim=-1)
|
72 |
-
else:
|
73 |
-
x1, x2 = x[..., ::2], x[..., 1::2]
|
74 |
-
return rearrange(
|
75 |
-
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
76 |
-
)
|
77 |
-
|
78 |
-
|
79 |
-
def apply_rotary_emb_torch(
|
80 |
-
x: torch.Tensor,
|
81 |
-
cos: torch.Tensor,
|
82 |
-
sin: torch.Tensor,
|
83 |
-
interleaved: bool = False,
|
84 |
-
_inplace: bool = False,
|
85 |
-
) -> torch.Tensor:
|
86 |
-
"""Apply rotary embeddings to input based on cos and sin."""
|
87 |
-
ro_dim = cos.shape[-1] * 2
|
88 |
-
assert ro_dim <= x.shape[-1]
|
89 |
-
seqlen = x.size(1)
|
90 |
-
cos = cos[:seqlen]
|
91 |
-
sin = sin[:seqlen]
|
92 |
-
cos = repeat(cos, "s d -> s 1 (2 d)")
|
93 |
-
sin = repeat(sin, "s d -> s 1 (2 d)")
|
94 |
-
return torch.cat(
|
95 |
-
[
|
96 |
-
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
|
97 |
-
x[..., ro_dim:],
|
98 |
-
],
|
99 |
-
dim=-1,
|
100 |
-
)
|
101 |
-
|
102 |
-
|
103 |
-
class RotaryEmbedding(torch.nn.Module):
|
104 |
-
"""Rotary position embeddings.
|
105 |
-
|
106 |
-
Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding"
|
107 |
-
|
108 |
-
Args:
|
109 |
-
dim: Dimension of the embedding
|
110 |
-
base: Base for computing angular frequencies
|
111 |
-
interleaved: Whether to use interleaved rotations
|
112 |
-
scale_base: Base for scaling
|
113 |
-
scaling_factor: Factor for scaling positions
|
114 |
-
pos_idx_in_fp32: Whether to compute position indices in fp32
|
115 |
-
device: Computation device
|
116 |
-
"""
|
117 |
-
def __init__(
|
118 |
-
self,
|
119 |
-
dim: int,
|
120 |
-
base: float = 10000.0,
|
121 |
-
interleaved: bool = False,
|
122 |
-
scale_base: Optional[float] = None,
|
123 |
-
scaling_factor: float = 1.0,
|
124 |
-
pos_idx_in_fp32: bool = True,
|
125 |
-
device: Optional[torch.device] = None,
|
126 |
-
):
|
127 |
-
super().__init__()
|
128 |
-
self.dim = dim
|
129 |
-
self.base = float(base)
|
130 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
131 |
-
self.interleaved = interleaved
|
132 |
-
self.scale_base = scale_base
|
133 |
-
self.scaling_factor = scaling_factor
|
134 |
-
self.device = device
|
135 |
-
|
136 |
-
self._seq_len_cached = 0
|
137 |
-
self._cos_cached = None
|
138 |
-
self._sin_cached = None
|
139 |
-
self._cos_k_cached = None
|
140 |
-
self._sin_k_cached = None
|
141 |
-
self.reset_parameters()
|
142 |
-
|
143 |
-
def reset_parameters(self):
|
144 |
-
"""Reset the parameters of the embedding."""
|
145 |
-
inv_freq = self._compute_inv_freq(self.device)
|
146 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
147 |
-
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
|
148 |
-
scale = (
|
149 |
-
(arange + 0.4 * self.dim) / (1.4 * self.dim)
|
150 |
-
if self.scale_base is not None
|
151 |
-
else None
|
152 |
-
)
|
153 |
-
self.register_buffer("scale", scale)
|
154 |
-
|
155 |
-
def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor:
|
156 |
-
"""Compute inverse frequency bands."""
|
157 |
-
return 1 / (
|
158 |
-
self.base
|
159 |
-
** (
|
160 |
-
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
161 |
-
/ self.dim
|
162 |
-
)
|
163 |
-
)
|
164 |
-
|
165 |
-
def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
166 |
-
"""Update the cached cosine and sine values."""
|
167 |
-
if (
|
168 |
-
seqlen > self._seq_len_cached
|
169 |
-
or self._cos_cached is None
|
170 |
-
or self._cos_cached.device != device
|
171 |
-
or self._cos_cached.dtype != dtype
|
172 |
-
or (self.training and self._cos_cached.is_inference())
|
173 |
-
):
|
174 |
-
self._seq_len_cached = seqlen
|
175 |
-
if self.pos_idx_in_fp32:
|
176 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
177 |
-
t /= self.scaling_factor
|
178 |
-
if self.inv_freq.dtype != torch.float32:
|
179 |
-
inv_freq = self.inv_freq.to(torch.float32)
|
180 |
-
else:
|
181 |
-
inv_freq = self.inv_freq
|
182 |
-
else:
|
183 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
184 |
-
t /= self.scaling_factor
|
185 |
-
inv_freq = self.inv_freq
|
186 |
-
freqs = torch.outer(t, inv_freq)
|
187 |
-
|
188 |
-
if self.scale is None:
|
189 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
190 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
191 |
-
else:
|
192 |
-
power = (
|
193 |
-
torch.arange(
|
194 |
-
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
195 |
-
)
|
196 |
-
- seqlen // 2
|
197 |
-
) / self.scale_base
|
198 |
-
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
199 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
200 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
201 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
202 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
203 |
-
|
204 |
-
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
205 |
-
"""Apply rotary embeddings to queries and keys.
|
206 |
-
|
207 |
-
Args:
|
208 |
-
q: Query tensor of shape (batch, seqlen, nheads, headdim)
|
209 |
-
k: Key tensor of shape (batch, seqlen, nheads, headdim)
|
210 |
-
|
211 |
-
Returns:
|
212 |
-
Tuple of rotated query and key tensors
|
213 |
-
"""
|
214 |
-
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
|
215 |
-
assert self._cos_cached is not None
|
216 |
-
assert self._sin_cached is not None
|
217 |
-
if self.scale is None:
|
218 |
-
return (
|
219 |
-
apply_rotary_emb_torch(
|
220 |
-
q,
|
221 |
-
self._cos_cached,
|
222 |
-
self._sin_cached,
|
223 |
-
self.interleaved,
|
224 |
-
True, # inplace=True
|
225 |
-
),
|
226 |
-
apply_rotary_emb_torch(
|
227 |
-
k,
|
228 |
-
self._cos_cached,
|
229 |
-
self._sin_cached,
|
230 |
-
self.interleaved,
|
231 |
-
True, # inplace=True
|
232 |
-
),
|
233 |
-
) # type: ignore
|
234 |
-
else:
|
235 |
-
assert False
|
236 |
-
|
237 |
-
|
238 |
-
### Feedforward Network Components
|
239 |
-
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
|
240 |
-
"""Compute corrected dimension for SwiGLU."""
|
241 |
-
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
|
242 |
-
|
243 |
-
|
244 |
-
class SwiGLU(nn.Module):
|
245 |
-
"""SwiGLU activation function."""
|
246 |
-
def __init__(self):
|
247 |
-
super(SwiGLU, self).__init__()
|
248 |
-
|
249 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
250 |
-
x1, x2 = x.chunk(2, dim=-1)
|
251 |
-
return F.silu(x1) * x2
|
252 |
-
|
253 |
-
|
254 |
-
def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential:
|
255 |
-
"""Create SwiGLU feedforward network with layer normalization."""
|
256 |
-
return nn.Sequential(
|
257 |
-
nn.LayerNorm(d_model),
|
258 |
-
nn.Linear(
|
259 |
-
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
|
260 |
-
),
|
261 |
-
SwiGLU(),
|
262 |
-
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
|
263 |
-
)
|
264 |
-
|
265 |
-
|
266 |
-
### Attention
|
267 |
-
class MultiHeadAttention(nn.Module):
|
268 |
-
"""Multi-head attention with rotary embeddings.
|
269 |
-
|
270 |
-
Args:
|
271 |
-
d_model: Model dimension
|
272 |
-
n_heads: Number of attention heads
|
273 |
-
"""
|
274 |
-
def __init__(self, d_model: int, n_heads: int):
|
275 |
-
super().__init__()
|
276 |
-
self.d_model = d_model
|
277 |
-
self.n_heads = n_heads
|
278 |
-
self.d_head = self.d_model // self.n_heads
|
279 |
-
self.layernorm_qkv = nn.Sequential(
|
280 |
-
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
|
281 |
-
)
|
282 |
-
self.out_proj = nn.Linear(d_model, d_model, bias=False)
|
283 |
-
self.q_ln = nn.LayerNorm(d_model, bias=False)
|
284 |
-
self.k_ln = nn.LayerNorm(d_model, bias=False)
|
285 |
-
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
|
286 |
-
self.rotary = RotaryEmbedding(d_model // n_heads)
|
287 |
-
|
288 |
-
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
289 |
-
"""Apply rotary embeddings to query and key."""
|
290 |
-
q = q.unflatten(-1, (self.n_heads, self.d_head))
|
291 |
-
k = k.unflatten(-1, (self.n_heads, self.d_head))
|
292 |
-
q, k = self.rotary(q, k)
|
293 |
-
q = q.flatten(-2, -1)
|
294 |
-
k = k.flatten(-2, -1)
|
295 |
-
return q, k
|
296 |
-
|
297 |
-
def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
298 |
-
"""
|
299 |
-
Args:
|
300 |
-
x: Input tensor
|
301 |
-
attention_mask: Optional attention mask
|
302 |
-
output_attentions: Whether to return attention weights
|
303 |
-
|
304 |
-
Returns:
|
305 |
-
Output tensor after self attention, and optionally attention weights
|
306 |
-
"""
|
307 |
-
attn_weights = None
|
308 |
-
qkv_BLD3 = self.layernorm_qkv(x)
|
309 |
-
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
|
310 |
-
query_BLD, key_BLD = (
|
311 |
-
self.q_ln(query_BLD).to(query_BLD.dtype),
|
312 |
-
self.k_ln(key_BLD).to(query_BLD.dtype),
|
313 |
-
)
|
314 |
-
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
|
315 |
-
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))
|
316 |
-
|
317 |
-
if output_attentions: # Manual attention computation
|
318 |
-
L, S = query_BLD.size(-2), key_BLD.size(-2)
|
319 |
-
scale = 1 / math.sqrt(query_BLD.size(-1))
|
320 |
-
attn_bias = torch.zeros(L, S, dtype=query_BLD.dtype, device=query_BLD.device)
|
321 |
-
if attention_mask is not None:
|
322 |
-
if attention_mask.dtype == torch.bool:
|
323 |
-
attention_mask.masked_fill_(attention_mask.logical_not(), float('-inf'))
|
324 |
-
else:
|
325 |
-
attn_bias += attention_mask
|
326 |
-
|
327 |
-
attn_weights = torch.matmul(query_BHLD, key_BHLD.transpose(-2, -1)) * scale
|
328 |
-
attn_weights += attn_bias
|
329 |
-
attn_weights = F.softmax(attn_weights, dim=-1)
|
330 |
-
context_BHLD = torch.matmul(attn_weights, value_BHLD)
|
331 |
-
else:
|
332 |
-
context_BHLD = F.scaled_dot_product_attention(
|
333 |
-
query_BHLD, key_BHLD, value_BHLD, attention_mask
|
334 |
-
)
|
335 |
-
|
336 |
-
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
|
337 |
-
output = self.out_proj(context_BLD)
|
338 |
-
return output, attn_weights
|
339 |
-
|
340 |
-
|
341 |
-
### Regression Head
|
342 |
-
def RegressionHead(d_model: int, output_dim: int, hidden_dim: Optional[int] = None) -> nn.Module:
|
343 |
-
"""Create a regression head with optional hidden dimension.
|
344 |
-
|
345 |
-
Args:
|
346 |
-
d_model: Input dimension
|
347 |
-
output_dim: Output dimension
|
348 |
-
hidden_dim: Optional hidden dimension (defaults to d_model)
|
349 |
-
"""
|
350 |
-
hidden_dim = hidden_dim if hidden_dim is not None else d_model
|
351 |
-
return nn.Sequential(
|
352 |
-
nn.Linear(d_model, hidden_dim),
|
353 |
-
nn.GELU(),
|
354 |
-
nn.LayerNorm(hidden_dim),
|
355 |
-
nn.Linear(hidden_dim, output_dim),
|
356 |
-
)
|
357 |
-
|
358 |
-
|
359 |
-
### Transformer Block
|
360 |
-
class UnifiedTransformerBlock(nn.Module):
|
361 |
-
"""Transformer block with attention and feedforward layers.
|
362 |
-
|
363 |
-
Args:
|
364 |
-
d_model: Model dimension
|
365 |
-
n_heads: Number of attention heads
|
366 |
-
residue_scaling_factor: Factor for scaling residual connections
|
367 |
-
expansion_ratio: Expansion ratio for feedforward network
|
368 |
-
"""
|
369 |
-
def __init__(
|
370 |
-
self,
|
371 |
-
d_model: int,
|
372 |
-
n_heads: int,
|
373 |
-
residue_scaling_factor: float = 1,
|
374 |
-
expansion_ratio: float = 8 / 3,
|
375 |
-
dropout: float = 0.0,
|
376 |
-
):
|
377 |
-
super().__init__()
|
378 |
-
self.attn = MultiHeadAttention(d_model, n_heads)
|
379 |
-
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
|
380 |
-
self.scaling_factor = residue_scaling_factor
|
381 |
-
self.dropout = nn.Dropout(dropout)
|
382 |
-
|
383 |
-
def forward(
|
384 |
-
self,
|
385 |
-
x: torch.Tensor,
|
386 |
-
attention_mask: Optional[torch.Tensor] = None,
|
387 |
-
output_attentions: bool = False,
|
388 |
-
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
389 |
-
"""
|
390 |
-
Args:
|
391 |
-
x: Input tensor
|
392 |
-
attention_mask: Optional attention mask
|
393 |
-
output_attentions: Whether to return attention weights
|
394 |
-
|
395 |
-
Returns:
|
396 |
-
Output tensor after transformer block, and optionally attention weights
|
397 |
-
"""
|
398 |
-
attn_output, attn_weights = self.attn(x, attention_mask, output_attentions)
|
399 |
-
x = x + self.dropout(attn_output) / self.scaling_factor
|
400 |
-
x = x + self.dropout(self.ffn(x)) / self.scaling_factor
|
401 |
-
return x, attn_weights
|
402 |
-
|
403 |
-
|
404 |
-
### Model Outputs
|
405 |
-
@dataclass
|
406 |
-
class TransformerOutput(ModelOutput):
|
407 |
-
"""Output type for transformer encoder."""
|
408 |
-
last_hidden_state: Optional[torch.Tensor] = None
|
409 |
-
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
410 |
-
attentions: Optional[Tuple[torch.Tensor]] = None
|
411 |
-
|
412 |
-
|
413 |
-
@dataclass
|
414 |
-
class ESMplusplusOutput(ModelOutput):
|
415 |
-
"""Output type for ESM++ models."""
|
416 |
-
loss: Optional[torch.Tensor] = None
|
417 |
-
logits: Optional[torch.Tensor] = None
|
418 |
-
last_hidden_state: Optional[torch.Tensor] = None
|
419 |
-
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
420 |
-
attentions: Optional[Tuple[torch.Tensor]] = None
|
421 |
-
|
422 |
-
|
423 |
-
### Transformer Stack
|
424 |
-
class TransformerStack(nn.Module):
|
425 |
-
"""Stack of transformer blocks.
|
426 |
-
|
427 |
-
Args:
|
428 |
-
d_model: Model dimension
|
429 |
-
n_heads: Number of attention heads
|
430 |
-
n_layers: Number of transformer layers
|
431 |
-
dropout: Dropout rate
|
432 |
-
"""
|
433 |
-
def __init__(
|
434 |
-
self,
|
435 |
-
d_model: int,
|
436 |
-
n_heads: int,
|
437 |
-
n_layers: int,
|
438 |
-
dropout: float = 0.0,
|
439 |
-
):
|
440 |
-
super().__init__()
|
441 |
-
self.blocks = nn.ModuleList(
|
442 |
-
[
|
443 |
-
UnifiedTransformerBlock(
|
444 |
-
d_model,
|
445 |
-
n_heads,
|
446 |
-
residue_scaling_factor=math.sqrt(n_layers / 36),
|
447 |
-
dropout=dropout,
|
448 |
-
)
|
449 |
-
for i in range(n_layers)
|
450 |
-
]
|
451 |
-
)
|
452 |
-
self.norm = nn.LayerNorm(d_model, bias=False)
|
453 |
-
self.gradient_checkpointing = False
|
454 |
-
|
455 |
-
def forward(
|
456 |
-
self,
|
457 |
-
x: torch.Tensor,
|
458 |
-
attention_mask: Optional[torch.Tensor] = None,
|
459 |
-
output_hidden_states: bool = False,
|
460 |
-
output_attentions: bool = False,
|
461 |
-
) -> TransformerOutput:
|
462 |
-
"""
|
463 |
-
Args:
|
464 |
-
x: Input tensor
|
465 |
-
attention_mask: Optional attention mask
|
466 |
-
output_hidden_states: Whether to return all hidden states
|
467 |
-
output_attentions: Whether to return attention weights
|
468 |
-
|
469 |
-
Returns:
|
470 |
-
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
471 |
-
"""
|
472 |
-
batch_size, seq_len, _ = x.shape
|
473 |
-
hidden_states = () if output_hidden_states else None
|
474 |
-
attentions = () if output_attentions else None
|
475 |
-
|
476 |
-
if attention_mask is not None:
|
477 |
-
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
|
478 |
-
|
479 |
-
for block in self.blocks:
|
480 |
-
if self.gradient_checkpointing and self.training:
|
481 |
-
x, attn_weights = self._gradient_checkpointing_func(
|
482 |
-
block.__call__,
|
483 |
-
x,
|
484 |
-
attention_mask,
|
485 |
-
output_attentions,
|
486 |
-
)
|
487 |
-
else:
|
488 |
-
x, attn_weights = block(x, attention_mask, output_attentions)
|
489 |
-
|
490 |
-
if attentions is not None:
|
491 |
-
attentions += (attn_weights,)
|
492 |
-
|
493 |
-
if output_hidden_states:
|
494 |
-
assert hidden_states is not None
|
495 |
-
hidden_states += (x,)
|
496 |
-
|
497 |
-
return TransformerOutput(
|
498 |
-
last_hidden_state=self.norm(x),
|
499 |
-
hidden_states=hidden_states,
|
500 |
-
attentions=attentions
|
501 |
-
)
|
502 |
-
|
503 |
-
|
504 |
-
### Dataset for Embedding
|
505 |
-
class ProteinDataset(Dataset):
|
506 |
-
"""Simple dataset for protein sequences."""
|
507 |
-
def __init__(self, sequences: list[str]):
|
508 |
-
self.sequences = sequences
|
509 |
-
|
510 |
-
def __len__(self) -> int:
|
511 |
-
return len(self.sequences)
|
512 |
-
|
513 |
-
def __getitem__(self, idx: int) -> str:
|
514 |
-
return self.sequences[idx]
|
515 |
-
|
516 |
-
|
517 |
-
class PreTrainedESMplusplusModel(PreTrainedModel):
|
518 |
-
"""
|
519 |
-
init weights for ESM++ models
|
520 |
-
"""
|
521 |
-
config_class = ESMplusplusConfig
|
522 |
-
base_model_prefix = "esm++"
|
523 |
-
supports_gradient_checkpointing = True
|
524 |
-
|
525 |
-
def _init_weights(self, module):
|
526 |
-
"""Initialize the weights"""
|
527 |
-
if isinstance(module, nn.Linear):
|
528 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
529 |
-
if module.bias is not None:
|
530 |
-
module.bias.data.zero_()
|
531 |
-
elif isinstance(module, nn.Embedding):
|
532 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
533 |
-
if module.padding_idx is not None:
|
534 |
-
module.weight.data[module.padding_idx].zero_()
|
535 |
-
elif isinstance(module, nn.LayerNorm):
|
536 |
-
module.bias.data.zero_()
|
537 |
-
module.weight.data.fill_(1.0)
|
538 |
-
|
539 |
-
@classmethod
|
540 |
-
def from_pretrained_esm(cls, model_name: str):
|
541 |
-
"""Load a pretrained ESM++ model."""
|
542 |
-
if '300' in model_name:
|
543 |
-
return ESMplusplus_300M()
|
544 |
-
elif '600' in model_name:
|
545 |
-
return ESMplusplus_600M()
|
546 |
-
else:
|
547 |
-
raise ValueError(f"Invalid model name: {model_name}")
|
548 |
-
|
549 |
-
@property
|
550 |
-
def device(self) -> torch.device:
|
551 |
-
"""Get the device of the model."""
|
552 |
-
return next(self.parameters()).device
|
553 |
-
|
554 |
-
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
555 |
-
"""Apply mean pooling to sequence outputs."""
|
556 |
-
if attention_mask is None:
|
557 |
-
return x.mean(dim=1)
|
558 |
-
else:
|
559 |
-
attention_mask = attention_mask.unsqueeze(-1)
|
560 |
-
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
561 |
-
|
562 |
-
def max_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
563 |
-
"""Apply max pooling to sequence outputs."""
|
564 |
-
if attention_mask is None:
|
565 |
-
return x.max(dim=1).values
|
566 |
-
else:
|
567 |
-
attention_mask = attention_mask.unsqueeze(-1)
|
568 |
-
return (x * attention_mask).max(dim=1).values
|
569 |
-
|
570 |
-
def cls_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
571 |
-
"""Apply cls pooling to sequence outputs."""
|
572 |
-
return x[:, 0, :]
|
573 |
-
|
574 |
-
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
|
575 |
-
"""Collate function for batching sequences."""
|
576 |
-
return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
|
577 |
-
|
578 |
-
def _read_sequences_from_db(self, db_path: str) -> set[str]:
|
579 |
-
"""Read sequences from SQLite database."""
|
580 |
-
import sqlite3
|
581 |
-
sequences = []
|
582 |
-
with sqlite3.connect(db_path) as conn:
|
583 |
-
c = conn.cursor()
|
584 |
-
c.execute("SELECT sequence FROM embeddings")
|
585 |
-
while True:
|
586 |
-
row = c.fetchone()
|
587 |
-
if row is None:
|
588 |
-
break
|
589 |
-
sequences.append(row[0])
|
590 |
-
return set(sequences)
|
591 |
-
|
592 |
-
def embed_dataset(
|
593 |
-
self,
|
594 |
-
sequences: list[str],
|
595 |
-
batch_size: int = 2,
|
596 |
-
max_len: int = 512,
|
597 |
-
full_embeddings: bool = False,
|
598 |
-
full_precision: bool = False,
|
599 |
-
pooling_type: str = 'mean',
|
600 |
-
num_workers: int = 0,
|
601 |
-
sql: bool = False,
|
602 |
-
sql_db_path: str = 'embeddings.db',
|
603 |
-
) -> Optional[dict[str, torch.Tensor]]:
|
604 |
-
"""Embed a dataset of protein sequences.
|
605 |
-
|
606 |
-
Args:
|
607 |
-
sequences: List of protein sequences
|
608 |
-
batch_size: Batch size for processing
|
609 |
-
max_len: Maximum sequence length
|
610 |
-
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
|
611 |
-
full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage
|
612 |
-
pooling_type: Type of pooling ('mean' or 'cls')
|
613 |
-
num_workers: Number of workers for data loading, 0 for the main process
|
614 |
-
sql: Whether to store embeddings in SQLite database - will be stored in float32
|
615 |
-
sql_db_path: Path to SQLite database
|
616 |
-
|
617 |
-
Returns:
|
618 |
-
Dictionary mapping sequences to embeddings, or None if sql=True
|
619 |
-
"""
|
620 |
-
sequences = list(set([seq[:max_len] for seq in sequences]))
|
621 |
-
sequences = sorted(sequences, key=len, reverse=True)
|
622 |
-
dataset = ProteinDataset(sequences)
|
623 |
-
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn)
|
624 |
-
device = self.device
|
625 |
-
|
626 |
-
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
627 |
-
if full_embeddings:
|
628 |
-
return residue_embeddings
|
629 |
-
elif pooling_type == 'mean':
|
630 |
-
return self.mean_pooling(residue_embeddings, attention_mask)
|
631 |
-
elif pooling_type == 'max':
|
632 |
-
return self.max_pooling(residue_embeddings, attention_mask)
|
633 |
-
elif pooling_type == 'cls':
|
634 |
-
return self.cls_pooling(residue_embeddings, attention_mask)
|
635 |
-
else:
|
636 |
-
raise ValueError(f"Invalid pooling type: {pooling_type}")
|
637 |
-
|
638 |
-
if sql:
|
639 |
-
import sqlite3
|
640 |
-
conn = sqlite3.connect(sql_db_path)
|
641 |
-
c = conn.cursor()
|
642 |
-
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
|
643 |
-
already_embedded = self._read_sequences_from_db(sql_db_path)
|
644 |
-
to_embed = [seq for seq in sequences if seq not in already_embedded]
|
645 |
-
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
|
646 |
-
print(f"Embedding {len(to_embed)} new sequences")
|
647 |
-
if len(to_embed) > 0:
|
648 |
-
with torch.no_grad():
|
649 |
-
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
650 |
-
seqs = to_embed[i * batch_size:(i + 1) * batch_size]
|
651 |
-
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
652 |
-
x = self.embed(input_ids)
|
653 |
-
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach().float() # required for sql
|
654 |
-
embeddings = get_embeddings(residue_embeddings, attention_mask)
|
655 |
-
|
656 |
-
for seq, emb, mask in zip(seqs, embeddings, attention_mask):
|
657 |
-
if full_embeddings:
|
658 |
-
emb = emb[mask.bool()]
|
659 |
-
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)",
|
660 |
-
(seq, emb.cpu().numpy().tobytes()))
|
661 |
-
|
662 |
-
if (i + 1) % 100 == 0:
|
663 |
-
conn.commit()
|
664 |
-
|
665 |
-
conn.commit()
|
666 |
-
conn.close()
|
667 |
-
return None
|
668 |
-
|
669 |
-
embeddings_dict = {}
|
670 |
-
with torch.no_grad():
|
671 |
-
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
672 |
-
seqs = sequences[i * batch_size:(i + 1) * batch_size]
|
673 |
-
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
674 |
-
x = self.embed(input_ids)
|
675 |
-
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach()
|
676 |
-
if full_precision:
|
677 |
-
residue_embeddings = residue_embeddings.float()
|
678 |
-
embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
|
679 |
-
for seq, emb in zip(seqs, embeddings):
|
680 |
-
embeddings_dict[seq] = emb
|
681 |
-
|
682 |
-
return embeddings_dict
|
683 |
-
|
684 |
-
|
685 |
-
### ESM++ Models
|
686 |
-
class ESMplusplusModel(PreTrainedESMplusplusModel):
|
687 |
-
"""
|
688 |
-
ESM++ model. transformer model with no heads
|
689 |
-
"""
|
690 |
-
config_class = ESMplusplusConfig
|
691 |
-
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
692 |
-
super().__init__(config, **kwargs)
|
693 |
-
self.config = config
|
694 |
-
self.vocab_size = config.vocab_size
|
695 |
-
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
696 |
-
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
697 |
-
self.tokenizer = EsmSequenceTokenizer()
|
698 |
-
self.init_weights()
|
699 |
-
|
700 |
-
def get_input_embeddings(self):
|
701 |
-
return self.embed
|
702 |
-
|
703 |
-
def set_input_embeddings(self, value):
|
704 |
-
self.embed = value
|
705 |
-
|
706 |
-
def forward(
|
707 |
-
self,
|
708 |
-
input_ids: Optional[torch.Tensor] = None,
|
709 |
-
attention_mask: Optional[torch.Tensor] = None,
|
710 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
711 |
-
output_attentions: Optional[bool] = None,
|
712 |
-
output_hidden_states: Optional[bool] = None,
|
713 |
-
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
714 |
-
) -> TransformerOutput:
|
715 |
-
"""Forward pass for masked language modeling.
|
716 |
-
|
717 |
-
Args:
|
718 |
-
input_ids: Input token IDs
|
719 |
-
attention_mask: Attention mask
|
720 |
-
inputs_embeds: Optional precomputed embeddings
|
721 |
-
output_hidden_states: Whether to return all hidden states
|
722 |
-
output_attentions: Whether to return attention weights
|
723 |
-
|
724 |
-
Returns:
|
725 |
-
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
726 |
-
"""
|
727 |
-
if inputs_embeds is None:
|
728 |
-
x = self.embed(input_ids)
|
729 |
-
else:
|
730 |
-
x = inputs_embeds
|
731 |
-
return self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
732 |
-
|
733 |
-
|
734 |
-
class ESMplusplusForMaskedLM(PreTrainedESMplusplusModel):
|
735 |
-
"""
|
736 |
-
ESM++ model for masked language modeling.
|
737 |
-
Implements the base ESM++ architecture with a masked language modeling head.
|
738 |
-
"""
|
739 |
-
config_class = ESMplusplusConfig
|
740 |
-
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
741 |
-
super().__init__(config, **kwargs)
|
742 |
-
self.config = config
|
743 |
-
self.vocab_size = config.vocab_size
|
744 |
-
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
745 |
-
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
746 |
-
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
|
747 |
-
self.ce_loss = nn.CrossEntropyLoss()
|
748 |
-
self.tokenizer = EsmSequenceTokenizer()
|
749 |
-
self.init_weights()
|
750 |
-
|
751 |
-
def get_input_embeddings(self):
|
752 |
-
return self.embed
|
753 |
-
|
754 |
-
def set_input_embeddings(self, value):
|
755 |
-
self.embed = value
|
756 |
-
|
757 |
-
def get_output_embeddings(self):
|
758 |
-
return self.sequence_head[-1]
|
759 |
-
|
760 |
-
def set_output_embeddings(self, new_embeddings):
|
761 |
-
self.sequence_head[-1] = new_embeddings
|
762 |
-
|
763 |
-
def forward(
|
764 |
-
self,
|
765 |
-
input_ids: Optional[torch.Tensor] = None,
|
766 |
-
attention_mask: Optional[torch.Tensor] = None,
|
767 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
768 |
-
labels: Optional[torch.Tensor] = None,
|
769 |
-
output_attentions: Optional[bool] = None,
|
770 |
-
output_hidden_states: Optional[bool] = None,
|
771 |
-
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
772 |
-
) -> ESMplusplusOutput:
|
773 |
-
"""Forward pass for masked language modeling.
|
774 |
-
|
775 |
-
Args:
|
776 |
-
input_ids: Input token IDs
|
777 |
-
attention_mask: Attention mask
|
778 |
-
inputs_embeds: Optional precomputed embeddings
|
779 |
-
labels: Optional labels for masked tokens
|
780 |
-
output_hidden_states: Whether to return all hidden states
|
781 |
-
output_attentions: Whether to return attention weights
|
782 |
-
|
783 |
-
Returns:
|
784 |
-
ESMplusplusOutput containing loss, logits, hidden states and attention weights
|
785 |
-
"""
|
786 |
-
if inputs_embeds is None:
|
787 |
-
x = self.embed(input_ids)
|
788 |
-
else:
|
789 |
-
x = inputs_embeds
|
790 |
-
output = self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
791 |
-
x = output.last_hidden_state
|
792 |
-
logits = self.sequence_head(x)
|
793 |
-
loss = None
|
794 |
-
if labels is not None:
|
795 |
-
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
|
796 |
-
return ESMplusplusOutput(
|
797 |
-
loss=loss,
|
798 |
-
logits=logits,
|
799 |
-
last_hidden_state=x,
|
800 |
-
hidden_states=output.hidden_states,
|
801 |
-
attentions=output.attentions,
|
802 |
-
)
|
803 |
-
|
804 |
-
|
805 |
-
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
806 |
-
"""
|
807 |
-
ESM++ model for sequence classification.
|
808 |
-
Extends the base ESM++ model with a classification head.
|
809 |
-
"""
|
810 |
-
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
811 |
-
super().__init__(config, **kwargs)
|
812 |
-
self.config = config
|
813 |
-
self.num_labels = config.num_labels
|
814 |
-
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
|
815 |
-
# Large intermediate projections help with sequence classification tasks (*4)
|
816 |
-
self.mse = nn.MSELoss()
|
817 |
-
self.ce = nn.CrossEntropyLoss()
|
818 |
-
self.bce = nn.BCEWithLogitsLoss()
|
819 |
-
self.init_weights()
|
820 |
-
|
821 |
-
def forward(
|
822 |
-
self,
|
823 |
-
input_ids: Optional[torch.Tensor] = None,
|
824 |
-
attention_mask: Optional[torch.Tensor] = None,
|
825 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
826 |
-
labels: Optional[torch.Tensor] = None,
|
827 |
-
output_attentions: Optional[bool] = None,
|
828 |
-
output_hidden_states: Optional[bool] = None,
|
829 |
-
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
830 |
-
) -> ESMplusplusOutput:
|
831 |
-
"""Forward pass for sequence classification.
|
832 |
-
|
833 |
-
Args:
|
834 |
-
input_ids: Input token IDs
|
835 |
-
attention_mask: Attention mask
|
836 |
-
inputs_embeds: Optional precomputed embeddings
|
837 |
-
labels: Optional labels for classification
|
838 |
-
output_hidden_states: Whether to return all hidden states
|
839 |
-
output_attentions: Whether to return attention weights
|
840 |
-
|
841 |
-
Returns:
|
842 |
-
ESMplusplusOutput containing loss, logits, and hidden states
|
843 |
-
"""
|
844 |
-
output = super().forward(
|
845 |
-
input_ids=input_ids,
|
846 |
-
attention_mask=attention_mask,
|
847 |
-
inputs_embeds=inputs_embeds,
|
848 |
-
labels=None,
|
849 |
-
output_attentions=output_attentions,
|
850 |
-
output_hidden_states=output_hidden_states
|
851 |
-
)
|
852 |
-
x = output.last_hidden_state
|
853 |
-
cls_features = x[:, 0, :]
|
854 |
-
mean_features = self.mean_pooling(x, attention_mask)
|
855 |
-
# we include mean pooling features to help with early convergence, the cost of this is basically zero
|
856 |
-
features = torch.cat([cls_features, mean_features], dim=-1)
|
857 |
-
logits = self.classifier(features)
|
858 |
-
loss = None
|
859 |
-
if labels is not None:
|
860 |
-
labels = labels.to(logits.device)
|
861 |
-
if self.config.problem_type is None:
|
862 |
-
if self.num_labels == 1:
|
863 |
-
self.config.problem_type = "regression"
|
864 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
865 |
-
self.config.problem_type = "single_label_classification"
|
866 |
-
else:
|
867 |
-
self.config.problem_type = "multi_label_classification"
|
868 |
-
|
869 |
-
if self.config.problem_type == "regression":
|
870 |
-
if self.num_labels == 1:
|
871 |
-
loss = self.mse(logits.flatten(), labels.flatten())
|
872 |
-
else:
|
873 |
-
loss = self.mse(logits, labels)
|
874 |
-
elif self.config.problem_type == "single_label_classification":
|
875 |
-
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
|
876 |
-
elif self.config.problem_type == "multi_label_classification":
|
877 |
-
loss = self.bce(logits, labels)
|
878 |
-
return ESMplusplusOutput(
|
879 |
-
loss=loss,
|
880 |
-
logits=logits,
|
881 |
-
last_hidden_state=x,
|
882 |
-
hidden_states=output.hidden_states,
|
883 |
-
)
|
884 |
-
|
885 |
-
|
886 |
-
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
887 |
-
"""
|
888 |
-
ESM++ model for token classification.
|
889 |
-
Extends the base ESM++ model with a token classification head.
|
890 |
-
"""
|
891 |
-
def __init__(self, config: ESMplusplusConfig):
|
892 |
-
super().__init__(config)
|
893 |
-
self.config = config
|
894 |
-
self.num_labels = config.num_labels
|
895 |
-
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
896 |
-
# Large intermediate projections help with sequence classification tasks (*4)
|
897 |
-
self.loss_fct = nn.CrossEntropyLoss()
|
898 |
-
self.init_weights()
|
899 |
-
|
900 |
-
def forward(
|
901 |
-
self,
|
902 |
-
input_ids: Optional[torch.Tensor] = None,
|
903 |
-
attention_mask: Optional[torch.Tensor] = None,
|
904 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
905 |
-
labels: Optional[torch.Tensor] = None,
|
906 |
-
output_attentions: Optional[bool] = None,
|
907 |
-
output_hidden_states: Optional[bool] = None,
|
908 |
-
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
909 |
-
) -> ESMplusplusOutput:
|
910 |
-
"""Forward pass for token classification.
|
911 |
-
|
912 |
-
Args:
|
913 |
-
input_ids: Input token IDs
|
914 |
-
attention_mask: Attention mask
|
915 |
-
inputs_embeds: Optional precomputed embeddings
|
916 |
-
labels: Optional labels for token classification
|
917 |
-
output_hidden_states: Whether to return all hidden states
|
918 |
-
output_attentions: Whether to return attention weights
|
919 |
-
|
920 |
-
Returns:
|
921 |
-
ESMplusplusOutput containing loss, logits, and hidden states
|
922 |
-
"""
|
923 |
-
output = super().forward(
|
924 |
-
input_ids=input_ids,
|
925 |
-
attention_mask=attention_mask,
|
926 |
-
inputs_embeds=inputs_embeds,
|
927 |
-
labels=None,
|
928 |
-
output_attentions=output_attentions,
|
929 |
-
output_hidden_states=output_hidden_states
|
930 |
-
)
|
931 |
-
x = output.last_hidden_state
|
932 |
-
logits = self.classifier(x)
|
933 |
-
loss = None
|
934 |
-
if labels is not None:
|
935 |
-
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
936 |
-
return ESMplusplusOutput(
|
937 |
-
loss=loss,
|
938 |
-
logits=logits,
|
939 |
-
last_hidden_state=x,
|
940 |
-
hidden_states=output.hidden_states,
|
941 |
-
)
|
942 |
-
|
943 |
-
|
944 |
-
### Loading from EvolutionaryScale
|
945 |
-
@staticmethod
|
946 |
-
@cache
|
947 |
-
def data_root(model: str):
|
948 |
-
if "INFRA_PROVIDER" in os.environ:
|
949 |
-
return Path("")
|
950 |
-
# Try to download from hugginface if it doesn't exist
|
951 |
-
if model.startswith("esmc-300"):
|
952 |
-
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
|
953 |
-
elif model.startswith("esmc-600"):
|
954 |
-
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
|
955 |
-
else:
|
956 |
-
raise ValueError(f"{model=} is an invalid model name.")
|
957 |
-
return path
|
958 |
-
|
959 |
-
|
960 |
-
def ESMplusplus_300M(device: torch.device | str = "cpu"):
|
961 |
-
with torch.device(device):
|
962 |
-
config = ESMplusplusConfig(
|
963 |
-
hidden_size=960,
|
964 |
-
num_attention_heads=15,
|
965 |
-
num_hidden_layers=30,
|
966 |
-
)
|
967 |
-
model = ESMplusplusForMaskedLM(config)
|
968 |
-
state_dict = torch.load(
|
969 |
-
data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
|
970 |
-
map_location=device,
|
971 |
-
)
|
972 |
-
model.load_state_dict(state_dict)
|
973 |
-
return model
|
974 |
-
|
975 |
-
|
976 |
-
def ESMplusplus_600M(device: torch.device | str = "cpu"):
|
977 |
-
with torch.device(device):
|
978 |
-
config = ESMplusplusConfig(
|
979 |
-
hidden_size=1152,
|
980 |
-
num_attention_heads=18,
|
981 |
-
num_hidden_layers=36,
|
982 |
-
)
|
983 |
-
model = ESMplusplusForMaskedLM(config)
|
984 |
-
state_dict = torch.load(
|
985 |
-
data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
|
986 |
-
map_location=device,
|
987 |
-
)
|
988 |
-
model.load_state_dict(state_dict)
|
989 |
-
return model
|
990 |
-
|
991 |
-
|
992 |
-
### Tokenization
|
993 |
-
SEQUENCE_VOCAB = [
|
994 |
-
"<cls>", "<pad>", "<eos>", "<unk>",
|
995 |
-
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
|
996 |
-
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
|
997 |
-
"O", ".", "-", "|",
|
998 |
-
"<mask>",
|
999 |
-
]
|
1000 |
-
|
1001 |
-
class EsmSequenceTokenizer(PreTrainedTokenizerFast):
|
1002 |
-
model_input_names = ["input_ids", "attention_mask"]
|
1003 |
-
|
1004 |
-
def __init__(
|
1005 |
-
self,
|
1006 |
-
unk_token="<unk>",
|
1007 |
-
cls_token="<cls>",
|
1008 |
-
pad_token="<pad>",
|
1009 |
-
mask_token="<mask>",
|
1010 |
-
eos_token="<eos>",
|
1011 |
-
chain_break_token="|",
|
1012 |
-
**kwargs,
|
1013 |
-
):
|
1014 |
-
all_tokens = SEQUENCE_VOCAB
|
1015 |
-
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
|
1016 |
-
|
1017 |
-
# a character-level tokenizer is the same as BPE with no token merges
|
1018 |
-
bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
|
1019 |
-
tokenizer = Tokenizer(bpe)
|
1020 |
-
special_tokens = [
|
1021 |
-
cls_token,
|
1022 |
-
pad_token,
|
1023 |
-
mask_token,
|
1024 |
-
eos_token,
|
1025 |
-
chain_break_token,
|
1026 |
-
]
|
1027 |
-
self.cb_token = chain_break_token
|
1028 |
-
additional_special_tokens = [chain_break_token]
|
1029 |
-
|
1030 |
-
tokenizer.add_special_tokens(special_tokens)
|
1031 |
-
|
1032 |
-
# This is where we configure the automatic addition of special tokens when we call
|
1033 |
-
# tokenizer(text, add_special_tokens=True). Note that you can also configure how two
|
1034 |
-
# sequences are merged if you want.
|
1035 |
-
tokenizer.post_processor = TemplateProcessing( # type: ignore
|
1036 |
-
single="<cls> $A <eos>",
|
1037 |
-
special_tokens=[
|
1038 |
-
("<cls>", tokenizer.token_to_id("<cls>")),
|
1039 |
-
("<eos>", tokenizer.token_to_id("<eos>")),
|
1040 |
-
],
|
1041 |
-
)
|
1042 |
-
super().__init__(
|
1043 |
-
tokenizer_object=tokenizer,
|
1044 |
-
unk_token=unk_token,
|
1045 |
-
cls_token=cls_token,
|
1046 |
-
pad_token=pad_token,
|
1047 |
-
mask_token=mask_token,
|
1048 |
-
eos_token=eos_token,
|
1049 |
-
additional_special_tokens=additional_special_tokens,
|
1050 |
-
**kwargs,
|
1051 |
-
)
|
1052 |
-
|
1053 |
-
# These are a footgun, we never use the `bos` token anywhere so we're just overriding it here.
|
1054 |
-
@property
|
1055 |
-
def bos_token(self):
|
1056 |
-
return self.cls_token
|
1057 |
-
|
1058 |
-
@property
|
1059 |
-
def bos_token_id(self):
|
1060 |
-
return self.cls_token_id
|
1061 |
-
|
1062 |
-
@property
|
1063 |
-
def chain_break_token(self):
|
1064 |
-
return self.cb_token
|
1065 |
-
|
1066 |
-
@property
|
1067 |
-
def chain_break_token_id(self):
|
1068 |
-
return self.convert_tokens_to_ids(self.chain_break_token)
|
1069 |
-
|
1070 |
-
@property
|
1071 |
-
def all_token_ids(self):
|
1072 |
-
return list(range(self.vocab_size))
|
1073 |
-
|
1074 |
-
@property
|
1075 |
-
def special_token_ids(self):
|
1076 |
-
return self.all_special_ids
|
|
|
1 |
+
"""
|
2 |
+
ESM++ model implementation.
|
3 |
+
|
4 |
+
ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility
|
5 |
+
The ESM Python package is not required
|
6 |
+
|
7 |
+
Modified from https://github.com/evolutionaryscale/esm
|
8 |
+
License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement
|
9 |
+
"""
|
10 |
+
|
11 |
+
import math
|
12 |
+
import os
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from functools import cache, partial
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
from einops import rearrange, repeat
|
21 |
+
from huggingface_hub import snapshot_download
|
22 |
+
from tokenizers import Tokenizer
|
23 |
+
from tokenizers.models import BPE
|
24 |
+
from tokenizers.processors import TemplateProcessing
|
25 |
+
from torch.utils.data import Dataset, DataLoader
|
26 |
+
from tqdm.auto import tqdm
|
27 |
+
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig
|
28 |
+
from transformers.modeling_outputs import ModelOutput
|
29 |
+
|
30 |
+
|
31 |
+
class ESMplusplusConfig(PretrainedConfig):
|
32 |
+
"""Configuration class for ESM++ model.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size: Size of the vocabulary
|
36 |
+
hidden_size: Dimension of hidden layers
|
37 |
+
num_attention_heads: Number of attention heads
|
38 |
+
num_hidden_layers: Number of transformer layers
|
39 |
+
num_labels: Number of output labels for classification
|
40 |
+
problem_type: Type of problem - regression, single/multi label classification
|
41 |
+
"""
|
42 |
+
model_type = "ESMplusplus"
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
vocab_size: int = 64,
|
46 |
+
hidden_size: int = 960,
|
47 |
+
num_attention_heads: int = 15,
|
48 |
+
num_hidden_layers: int = 30,
|
49 |
+
num_labels: int = 2,
|
50 |
+
problem_type: str | None = None,
|
51 |
+
dropout: float = 0.0,
|
52 |
+
initializer_range: float = 0.02,
|
53 |
+
**kwargs,
|
54 |
+
):
|
55 |
+
super().__init__(**kwargs)
|
56 |
+
self.vocab_size = vocab_size
|
57 |
+
self.hidden_size = hidden_size
|
58 |
+
self.num_attention_heads = num_attention_heads
|
59 |
+
self.num_hidden_layers = num_hidden_layers
|
60 |
+
self.num_labels = num_labels
|
61 |
+
self.problem_type = problem_type
|
62 |
+
self.dropout = dropout
|
63 |
+
self.initializer_range = initializer_range
|
64 |
+
|
65 |
+
|
66 |
+
### Rotary Embeddings
|
67 |
+
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
|
68 |
+
"""Rotates half the hidden dims of the input."""
|
69 |
+
if not interleaved:
|
70 |
+
x1, x2 = x.chunk(2, dim=-1)
|
71 |
+
return torch.cat((-x2, x1), dim=-1)
|
72 |
+
else:
|
73 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
74 |
+
return rearrange(
|
75 |
+
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
def apply_rotary_emb_torch(
|
80 |
+
x: torch.Tensor,
|
81 |
+
cos: torch.Tensor,
|
82 |
+
sin: torch.Tensor,
|
83 |
+
interleaved: bool = False,
|
84 |
+
_inplace: bool = False,
|
85 |
+
) -> torch.Tensor:
|
86 |
+
"""Apply rotary embeddings to input based on cos and sin."""
|
87 |
+
ro_dim = cos.shape[-1] * 2
|
88 |
+
assert ro_dim <= x.shape[-1]
|
89 |
+
seqlen = x.size(1)
|
90 |
+
cos = cos[:seqlen]
|
91 |
+
sin = sin[:seqlen]
|
92 |
+
cos = repeat(cos, "s d -> s 1 (2 d)")
|
93 |
+
sin = repeat(sin, "s d -> s 1 (2 d)")
|
94 |
+
return torch.cat(
|
95 |
+
[
|
96 |
+
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
|
97 |
+
x[..., ro_dim:],
|
98 |
+
],
|
99 |
+
dim=-1,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
class RotaryEmbedding(torch.nn.Module):
|
104 |
+
"""Rotary position embeddings.
|
105 |
+
|
106 |
+
Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding"
|
107 |
+
|
108 |
+
Args:
|
109 |
+
dim: Dimension of the embedding
|
110 |
+
base: Base for computing angular frequencies
|
111 |
+
interleaved: Whether to use interleaved rotations
|
112 |
+
scale_base: Base for scaling
|
113 |
+
scaling_factor: Factor for scaling positions
|
114 |
+
pos_idx_in_fp32: Whether to compute position indices in fp32
|
115 |
+
device: Computation device
|
116 |
+
"""
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
dim: int,
|
120 |
+
base: float = 10000.0,
|
121 |
+
interleaved: bool = False,
|
122 |
+
scale_base: Optional[float] = None,
|
123 |
+
scaling_factor: float = 1.0,
|
124 |
+
pos_idx_in_fp32: bool = True,
|
125 |
+
device: Optional[torch.device] = None,
|
126 |
+
):
|
127 |
+
super().__init__()
|
128 |
+
self.dim = dim
|
129 |
+
self.base = float(base)
|
130 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
131 |
+
self.interleaved = interleaved
|
132 |
+
self.scale_base = scale_base
|
133 |
+
self.scaling_factor = scaling_factor
|
134 |
+
self.device = device
|
135 |
+
|
136 |
+
self._seq_len_cached = 0
|
137 |
+
self._cos_cached = None
|
138 |
+
self._sin_cached = None
|
139 |
+
self._cos_k_cached = None
|
140 |
+
self._sin_k_cached = None
|
141 |
+
self.reset_parameters()
|
142 |
+
|
143 |
+
def reset_parameters(self):
|
144 |
+
"""Reset the parameters of the embedding."""
|
145 |
+
inv_freq = self._compute_inv_freq(self.device)
|
146 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
147 |
+
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
|
148 |
+
scale = (
|
149 |
+
(arange + 0.4 * self.dim) / (1.4 * self.dim)
|
150 |
+
if self.scale_base is not None
|
151 |
+
else None
|
152 |
+
)
|
153 |
+
self.register_buffer("scale", scale)
|
154 |
+
|
155 |
+
def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor:
|
156 |
+
"""Compute inverse frequency bands."""
|
157 |
+
return 1 / (
|
158 |
+
self.base
|
159 |
+
** (
|
160 |
+
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
161 |
+
/ self.dim
|
162 |
+
)
|
163 |
+
)
|
164 |
+
|
165 |
+
def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
166 |
+
"""Update the cached cosine and sine values."""
|
167 |
+
if (
|
168 |
+
seqlen > self._seq_len_cached
|
169 |
+
or self._cos_cached is None
|
170 |
+
or self._cos_cached.device != device
|
171 |
+
or self._cos_cached.dtype != dtype
|
172 |
+
or (self.training and self._cos_cached.is_inference())
|
173 |
+
):
|
174 |
+
self._seq_len_cached = seqlen
|
175 |
+
if self.pos_idx_in_fp32:
|
176 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
177 |
+
t /= self.scaling_factor
|
178 |
+
if self.inv_freq.dtype != torch.float32:
|
179 |
+
inv_freq = self.inv_freq.to(torch.float32)
|
180 |
+
else:
|
181 |
+
inv_freq = self.inv_freq
|
182 |
+
else:
|
183 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
184 |
+
t /= self.scaling_factor
|
185 |
+
inv_freq = self.inv_freq
|
186 |
+
freqs = torch.outer(t, inv_freq)
|
187 |
+
|
188 |
+
if self.scale is None:
|
189 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
190 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
191 |
+
else:
|
192 |
+
power = (
|
193 |
+
torch.arange(
|
194 |
+
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
195 |
+
)
|
196 |
+
- seqlen // 2
|
197 |
+
) / self.scale_base
|
198 |
+
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
199 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
200 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
201 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
202 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
203 |
+
|
204 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
205 |
+
"""Apply rotary embeddings to queries and keys.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
q: Query tensor of shape (batch, seqlen, nheads, headdim)
|
209 |
+
k: Key tensor of shape (batch, seqlen, nheads, headdim)
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
Tuple of rotated query and key tensors
|
213 |
+
"""
|
214 |
+
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
|
215 |
+
assert self._cos_cached is not None
|
216 |
+
assert self._sin_cached is not None
|
217 |
+
if self.scale is None:
|
218 |
+
return (
|
219 |
+
apply_rotary_emb_torch(
|
220 |
+
q,
|
221 |
+
self._cos_cached,
|
222 |
+
self._sin_cached,
|
223 |
+
self.interleaved,
|
224 |
+
True, # inplace=True
|
225 |
+
),
|
226 |
+
apply_rotary_emb_torch(
|
227 |
+
k,
|
228 |
+
self._cos_cached,
|
229 |
+
self._sin_cached,
|
230 |
+
self.interleaved,
|
231 |
+
True, # inplace=True
|
232 |
+
),
|
233 |
+
) # type: ignore
|
234 |
+
else:
|
235 |
+
assert False
|
236 |
+
|
237 |
+
|
238 |
+
### Feedforward Network Components
|
239 |
+
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
|
240 |
+
"""Compute corrected dimension for SwiGLU."""
|
241 |
+
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
|
242 |
+
|
243 |
+
|
244 |
+
class SwiGLU(nn.Module):
|
245 |
+
"""SwiGLU activation function."""
|
246 |
+
def __init__(self):
|
247 |
+
super(SwiGLU, self).__init__()
|
248 |
+
|
249 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
250 |
+
x1, x2 = x.chunk(2, dim=-1)
|
251 |
+
return F.silu(x1) * x2
|
252 |
+
|
253 |
+
|
254 |
+
def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential:
|
255 |
+
"""Create SwiGLU feedforward network with layer normalization."""
|
256 |
+
return nn.Sequential(
|
257 |
+
nn.LayerNorm(d_model),
|
258 |
+
nn.Linear(
|
259 |
+
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
|
260 |
+
),
|
261 |
+
SwiGLU(),
|
262 |
+
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
### Attention
|
267 |
+
class MultiHeadAttention(nn.Module):
|
268 |
+
"""Multi-head attention with rotary embeddings.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
d_model: Model dimension
|
272 |
+
n_heads: Number of attention heads
|
273 |
+
"""
|
274 |
+
def __init__(self, d_model: int, n_heads: int):
|
275 |
+
super().__init__()
|
276 |
+
self.d_model = d_model
|
277 |
+
self.n_heads = n_heads
|
278 |
+
self.d_head = self.d_model // self.n_heads
|
279 |
+
self.layernorm_qkv = nn.Sequential(
|
280 |
+
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
|
281 |
+
)
|
282 |
+
self.out_proj = nn.Linear(d_model, d_model, bias=False)
|
283 |
+
self.q_ln = nn.LayerNorm(d_model, bias=False)
|
284 |
+
self.k_ln = nn.LayerNorm(d_model, bias=False)
|
285 |
+
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
|
286 |
+
self.rotary = RotaryEmbedding(d_model // n_heads)
|
287 |
+
|
288 |
+
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
289 |
+
"""Apply rotary embeddings to query and key."""
|
290 |
+
q = q.unflatten(-1, (self.n_heads, self.d_head))
|
291 |
+
k = k.unflatten(-1, (self.n_heads, self.d_head))
|
292 |
+
q, k = self.rotary(q, k)
|
293 |
+
q = q.flatten(-2, -1)
|
294 |
+
k = k.flatten(-2, -1)
|
295 |
+
return q, k
|
296 |
+
|
297 |
+
def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
298 |
+
"""
|
299 |
+
Args:
|
300 |
+
x: Input tensor
|
301 |
+
attention_mask: Optional attention mask
|
302 |
+
output_attentions: Whether to return attention weights
|
303 |
+
|
304 |
+
Returns:
|
305 |
+
Output tensor after self attention, and optionally attention weights
|
306 |
+
"""
|
307 |
+
attn_weights = None
|
308 |
+
qkv_BLD3 = self.layernorm_qkv(x)
|
309 |
+
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
|
310 |
+
query_BLD, key_BLD = (
|
311 |
+
self.q_ln(query_BLD).to(query_BLD.dtype),
|
312 |
+
self.k_ln(key_BLD).to(query_BLD.dtype),
|
313 |
+
)
|
314 |
+
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
|
315 |
+
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))
|
316 |
+
|
317 |
+
if output_attentions: # Manual attention computation
|
318 |
+
L, S = query_BLD.size(-2), key_BLD.size(-2)
|
319 |
+
scale = 1 / math.sqrt(query_BLD.size(-1))
|
320 |
+
attn_bias = torch.zeros(L, S, dtype=query_BLD.dtype, device=query_BLD.device)
|
321 |
+
if attention_mask is not None:
|
322 |
+
if attention_mask.dtype == torch.bool:
|
323 |
+
attention_mask.masked_fill_(attention_mask.logical_not(), float('-inf'))
|
324 |
+
else:
|
325 |
+
attn_bias += attention_mask
|
326 |
+
|
327 |
+
attn_weights = torch.matmul(query_BHLD, key_BHLD.transpose(-2, -1)) * scale
|
328 |
+
attn_weights += attn_bias
|
329 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
330 |
+
context_BHLD = torch.matmul(attn_weights, value_BHLD)
|
331 |
+
else:
|
332 |
+
context_BHLD = F.scaled_dot_product_attention(
|
333 |
+
query_BHLD, key_BHLD, value_BHLD, attention_mask
|
334 |
+
)
|
335 |
+
|
336 |
+
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
|
337 |
+
output = self.out_proj(context_BLD)
|
338 |
+
return output, attn_weights
|
339 |
+
|
340 |
+
|
341 |
+
### Regression Head
|
342 |
+
def RegressionHead(d_model: int, output_dim: int, hidden_dim: Optional[int] = None) -> nn.Module:
|
343 |
+
"""Create a regression head with optional hidden dimension.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
d_model: Input dimension
|
347 |
+
output_dim: Output dimension
|
348 |
+
hidden_dim: Optional hidden dimension (defaults to d_model)
|
349 |
+
"""
|
350 |
+
hidden_dim = hidden_dim if hidden_dim is not None else d_model
|
351 |
+
return nn.Sequential(
|
352 |
+
nn.Linear(d_model, hidden_dim),
|
353 |
+
nn.GELU(),
|
354 |
+
nn.LayerNorm(hidden_dim),
|
355 |
+
nn.Linear(hidden_dim, output_dim),
|
356 |
+
)
|
357 |
+
|
358 |
+
|
359 |
+
### Transformer Block
|
360 |
+
class UnifiedTransformerBlock(nn.Module):
|
361 |
+
"""Transformer block with attention and feedforward layers.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
d_model: Model dimension
|
365 |
+
n_heads: Number of attention heads
|
366 |
+
residue_scaling_factor: Factor for scaling residual connections
|
367 |
+
expansion_ratio: Expansion ratio for feedforward network
|
368 |
+
"""
|
369 |
+
def __init__(
|
370 |
+
self,
|
371 |
+
d_model: int,
|
372 |
+
n_heads: int,
|
373 |
+
residue_scaling_factor: float = 1,
|
374 |
+
expansion_ratio: float = 8 / 3,
|
375 |
+
dropout: float = 0.0,
|
376 |
+
):
|
377 |
+
super().__init__()
|
378 |
+
self.attn = MultiHeadAttention(d_model, n_heads)
|
379 |
+
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
|
380 |
+
self.scaling_factor = residue_scaling_factor
|
381 |
+
self.dropout = nn.Dropout(dropout)
|
382 |
+
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
x: torch.Tensor,
|
386 |
+
attention_mask: Optional[torch.Tensor] = None,
|
387 |
+
output_attentions: bool = False,
|
388 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
389 |
+
"""
|
390 |
+
Args:
|
391 |
+
x: Input tensor
|
392 |
+
attention_mask: Optional attention mask
|
393 |
+
output_attentions: Whether to return attention weights
|
394 |
+
|
395 |
+
Returns:
|
396 |
+
Output tensor after transformer block, and optionally attention weights
|
397 |
+
"""
|
398 |
+
attn_output, attn_weights = self.attn(x, attention_mask, output_attentions)
|
399 |
+
x = x + self.dropout(attn_output) / self.scaling_factor
|
400 |
+
x = x + self.dropout(self.ffn(x)) / self.scaling_factor
|
401 |
+
return x, attn_weights
|
402 |
+
|
403 |
+
|
404 |
+
### Model Outputs
|
405 |
+
@dataclass
|
406 |
+
class TransformerOutput(ModelOutput):
|
407 |
+
"""Output type for transformer encoder."""
|
408 |
+
last_hidden_state: Optional[torch.Tensor] = None
|
409 |
+
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
410 |
+
attentions: Optional[Tuple[torch.Tensor]] = None
|
411 |
+
|
412 |
+
|
413 |
+
@dataclass
|
414 |
+
class ESMplusplusOutput(ModelOutput):
|
415 |
+
"""Output type for ESM++ models."""
|
416 |
+
loss: Optional[torch.Tensor] = None
|
417 |
+
logits: Optional[torch.Tensor] = None
|
418 |
+
last_hidden_state: Optional[torch.Tensor] = None
|
419 |
+
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
420 |
+
attentions: Optional[Tuple[torch.Tensor]] = None
|
421 |
+
|
422 |
+
|
423 |
+
### Transformer Stack
|
424 |
+
class TransformerStack(nn.Module):
|
425 |
+
"""Stack of transformer blocks.
|
426 |
+
|
427 |
+
Args:
|
428 |
+
d_model: Model dimension
|
429 |
+
n_heads: Number of attention heads
|
430 |
+
n_layers: Number of transformer layers
|
431 |
+
dropout: Dropout rate
|
432 |
+
"""
|
433 |
+
def __init__(
|
434 |
+
self,
|
435 |
+
d_model: int,
|
436 |
+
n_heads: int,
|
437 |
+
n_layers: int,
|
438 |
+
dropout: float = 0.0,
|
439 |
+
):
|
440 |
+
super().__init__()
|
441 |
+
self.blocks = nn.ModuleList(
|
442 |
+
[
|
443 |
+
UnifiedTransformerBlock(
|
444 |
+
d_model,
|
445 |
+
n_heads,
|
446 |
+
residue_scaling_factor=math.sqrt(n_layers / 36),
|
447 |
+
dropout=dropout,
|
448 |
+
)
|
449 |
+
for i in range(n_layers)
|
450 |
+
]
|
451 |
+
)
|
452 |
+
self.norm = nn.LayerNorm(d_model, bias=False)
|
453 |
+
self.gradient_checkpointing = False
|
454 |
+
|
455 |
+
def forward(
|
456 |
+
self,
|
457 |
+
x: torch.Tensor,
|
458 |
+
attention_mask: Optional[torch.Tensor] = None,
|
459 |
+
output_hidden_states: bool = False,
|
460 |
+
output_attentions: bool = False,
|
461 |
+
) -> TransformerOutput:
|
462 |
+
"""
|
463 |
+
Args:
|
464 |
+
x: Input tensor
|
465 |
+
attention_mask: Optional attention mask
|
466 |
+
output_hidden_states: Whether to return all hidden states
|
467 |
+
output_attentions: Whether to return attention weights
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
471 |
+
"""
|
472 |
+
batch_size, seq_len, _ = x.shape
|
473 |
+
hidden_states = () if output_hidden_states else None
|
474 |
+
attentions = () if output_attentions else None
|
475 |
+
|
476 |
+
if attention_mask is not None:
|
477 |
+
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
|
478 |
+
|
479 |
+
for block in self.blocks:
|
480 |
+
if self.gradient_checkpointing and self.training:
|
481 |
+
x, attn_weights = self._gradient_checkpointing_func(
|
482 |
+
block.__call__,
|
483 |
+
x,
|
484 |
+
attention_mask,
|
485 |
+
output_attentions,
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
x, attn_weights = block(x, attention_mask, output_attentions)
|
489 |
+
|
490 |
+
if attentions is not None:
|
491 |
+
attentions += (attn_weights,)
|
492 |
+
|
493 |
+
if output_hidden_states:
|
494 |
+
assert hidden_states is not None
|
495 |
+
hidden_states += (x,)
|
496 |
+
|
497 |
+
return TransformerOutput(
|
498 |
+
last_hidden_state=self.norm(x),
|
499 |
+
hidden_states=hidden_states,
|
500 |
+
attentions=attentions
|
501 |
+
)
|
502 |
+
|
503 |
+
|
504 |
+
### Dataset for Embedding
|
505 |
+
class ProteinDataset(Dataset):
|
506 |
+
"""Simple dataset for protein sequences."""
|
507 |
+
def __init__(self, sequences: list[str]):
|
508 |
+
self.sequences = sequences
|
509 |
+
|
510 |
+
def __len__(self) -> int:
|
511 |
+
return len(self.sequences)
|
512 |
+
|
513 |
+
def __getitem__(self, idx: int) -> str:
|
514 |
+
return self.sequences[idx]
|
515 |
+
|
516 |
+
|
517 |
+
class PreTrainedESMplusplusModel(PreTrainedModel):
|
518 |
+
"""
|
519 |
+
init weights for ESM++ models
|
520 |
+
"""
|
521 |
+
config_class = ESMplusplusConfig
|
522 |
+
base_model_prefix = "esm++"
|
523 |
+
supports_gradient_checkpointing = True
|
524 |
+
|
525 |
+
def _init_weights(self, module):
|
526 |
+
"""Initialize the weights"""
|
527 |
+
if isinstance(module, nn.Linear):
|
528 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
529 |
+
if module.bias is not None:
|
530 |
+
module.bias.data.zero_()
|
531 |
+
elif isinstance(module, nn.Embedding):
|
532 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
533 |
+
if module.padding_idx is not None:
|
534 |
+
module.weight.data[module.padding_idx].zero_()
|
535 |
+
elif isinstance(module, nn.LayerNorm):
|
536 |
+
module.bias.data.zero_()
|
537 |
+
module.weight.data.fill_(1.0)
|
538 |
+
|
539 |
+
@classmethod
|
540 |
+
def from_pretrained_esm(cls, model_name: str):
|
541 |
+
"""Load a pretrained ESM++ model."""
|
542 |
+
if '300' in model_name:
|
543 |
+
return ESMplusplus_300M()
|
544 |
+
elif '600' in model_name:
|
545 |
+
return ESMplusplus_600M()
|
546 |
+
else:
|
547 |
+
raise ValueError(f"Invalid model name: {model_name}")
|
548 |
+
|
549 |
+
@property
|
550 |
+
def device(self) -> torch.device:
|
551 |
+
"""Get the device of the model."""
|
552 |
+
return next(self.parameters()).device
|
553 |
+
|
554 |
+
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
555 |
+
"""Apply mean pooling to sequence outputs."""
|
556 |
+
if attention_mask is None:
|
557 |
+
return x.mean(dim=1)
|
558 |
+
else:
|
559 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
560 |
+
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
561 |
+
|
562 |
+
def max_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
563 |
+
"""Apply max pooling to sequence outputs."""
|
564 |
+
if attention_mask is None:
|
565 |
+
return x.max(dim=1).values
|
566 |
+
else:
|
567 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
568 |
+
return (x * attention_mask).max(dim=1).values
|
569 |
+
|
570 |
+
def cls_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
571 |
+
"""Apply cls pooling to sequence outputs."""
|
572 |
+
return x[:, 0, :]
|
573 |
+
|
574 |
+
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
|
575 |
+
"""Collate function for batching sequences."""
|
576 |
+
return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
|
577 |
+
|
578 |
+
def _read_sequences_from_db(self, db_path: str) -> set[str]:
|
579 |
+
"""Read sequences from SQLite database."""
|
580 |
+
import sqlite3
|
581 |
+
sequences = []
|
582 |
+
with sqlite3.connect(db_path) as conn:
|
583 |
+
c = conn.cursor()
|
584 |
+
c.execute("SELECT sequence FROM embeddings")
|
585 |
+
while True:
|
586 |
+
row = c.fetchone()
|
587 |
+
if row is None:
|
588 |
+
break
|
589 |
+
sequences.append(row[0])
|
590 |
+
return set(sequences)
|
591 |
+
|
592 |
+
def embed_dataset(
|
593 |
+
self,
|
594 |
+
sequences: list[str],
|
595 |
+
batch_size: int = 2,
|
596 |
+
max_len: int = 512,
|
597 |
+
full_embeddings: bool = False,
|
598 |
+
full_precision: bool = False,
|
599 |
+
pooling_type: str = 'mean',
|
600 |
+
num_workers: int = 0,
|
601 |
+
sql: bool = False,
|
602 |
+
sql_db_path: str = 'embeddings.db',
|
603 |
+
) -> Optional[dict[str, torch.Tensor]]:
|
604 |
+
"""Embed a dataset of protein sequences.
|
605 |
+
|
606 |
+
Args:
|
607 |
+
sequences: List of protein sequences
|
608 |
+
batch_size: Batch size for processing
|
609 |
+
max_len: Maximum sequence length
|
610 |
+
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
|
611 |
+
full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage
|
612 |
+
pooling_type: Type of pooling ('mean' or 'cls')
|
613 |
+
num_workers: Number of workers for data loading, 0 for the main process
|
614 |
+
sql: Whether to store embeddings in SQLite database - will be stored in float32
|
615 |
+
sql_db_path: Path to SQLite database
|
616 |
+
|
617 |
+
Returns:
|
618 |
+
Dictionary mapping sequences to embeddings, or None if sql=True
|
619 |
+
"""
|
620 |
+
sequences = list(set([seq[:max_len] for seq in sequences]))
|
621 |
+
sequences = sorted(sequences, key=len, reverse=True)
|
622 |
+
dataset = ProteinDataset(sequences)
|
623 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn)
|
624 |
+
device = self.device
|
625 |
+
|
626 |
+
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
627 |
+
if full_embeddings:
|
628 |
+
return residue_embeddings
|
629 |
+
elif pooling_type == 'mean':
|
630 |
+
return self.mean_pooling(residue_embeddings, attention_mask)
|
631 |
+
elif pooling_type == 'max':
|
632 |
+
return self.max_pooling(residue_embeddings, attention_mask)
|
633 |
+
elif pooling_type == 'cls':
|
634 |
+
return self.cls_pooling(residue_embeddings, attention_mask)
|
635 |
+
else:
|
636 |
+
raise ValueError(f"Invalid pooling type: {pooling_type}")
|
637 |
+
|
638 |
+
if sql:
|
639 |
+
import sqlite3
|
640 |
+
conn = sqlite3.connect(sql_db_path)
|
641 |
+
c = conn.cursor()
|
642 |
+
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
|
643 |
+
already_embedded = self._read_sequences_from_db(sql_db_path)
|
644 |
+
to_embed = [seq for seq in sequences if seq not in already_embedded]
|
645 |
+
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
|
646 |
+
print(f"Embedding {len(to_embed)} new sequences")
|
647 |
+
if len(to_embed) > 0:
|
648 |
+
with torch.no_grad():
|
649 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
650 |
+
seqs = to_embed[i * batch_size:(i + 1) * batch_size]
|
651 |
+
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
652 |
+
x = self.embed(input_ids)
|
653 |
+
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach().float() # required for sql
|
654 |
+
embeddings = get_embeddings(residue_embeddings, attention_mask)
|
655 |
+
|
656 |
+
for seq, emb, mask in zip(seqs, embeddings, attention_mask):
|
657 |
+
if full_embeddings:
|
658 |
+
emb = emb[mask.bool()]
|
659 |
+
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)",
|
660 |
+
(seq, emb.cpu().numpy().tobytes()))
|
661 |
+
|
662 |
+
if (i + 1) % 100 == 0:
|
663 |
+
conn.commit()
|
664 |
+
|
665 |
+
conn.commit()
|
666 |
+
conn.close()
|
667 |
+
return None
|
668 |
+
|
669 |
+
embeddings_dict = {}
|
670 |
+
with torch.no_grad():
|
671 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
672 |
+
seqs = sequences[i * batch_size:(i + 1) * batch_size]
|
673 |
+
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
674 |
+
x = self.embed(input_ids)
|
675 |
+
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach()
|
676 |
+
if full_precision:
|
677 |
+
residue_embeddings = residue_embeddings.float()
|
678 |
+
embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
|
679 |
+
for seq, emb in zip(seqs, embeddings):
|
680 |
+
embeddings_dict[seq] = emb
|
681 |
+
|
682 |
+
return embeddings_dict
|
683 |
+
|
684 |
+
|
685 |
+
### ESM++ Models
|
686 |
+
class ESMplusplusModel(PreTrainedESMplusplusModel):
|
687 |
+
"""
|
688 |
+
ESM++ model. transformer model with no heads
|
689 |
+
"""
|
690 |
+
config_class = ESMplusplusConfig
|
691 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
692 |
+
super().__init__(config, **kwargs)
|
693 |
+
self.config = config
|
694 |
+
self.vocab_size = config.vocab_size
|
695 |
+
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
696 |
+
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
697 |
+
self.tokenizer = EsmSequenceTokenizer()
|
698 |
+
self.init_weights()
|
699 |
+
|
700 |
+
def get_input_embeddings(self):
|
701 |
+
return self.embed
|
702 |
+
|
703 |
+
def set_input_embeddings(self, value):
|
704 |
+
self.embed = value
|
705 |
+
|
706 |
+
def forward(
|
707 |
+
self,
|
708 |
+
input_ids: Optional[torch.Tensor] = None,
|
709 |
+
attention_mask: Optional[torch.Tensor] = None,
|
710 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
711 |
+
output_attentions: Optional[bool] = None,
|
712 |
+
output_hidden_states: Optional[bool] = None,
|
713 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
714 |
+
) -> TransformerOutput:
|
715 |
+
"""Forward pass for masked language modeling.
|
716 |
+
|
717 |
+
Args:
|
718 |
+
input_ids: Input token IDs
|
719 |
+
attention_mask: Attention mask
|
720 |
+
inputs_embeds: Optional precomputed embeddings
|
721 |
+
output_hidden_states: Whether to return all hidden states
|
722 |
+
output_attentions: Whether to return attention weights
|
723 |
+
|
724 |
+
Returns:
|
725 |
+
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
726 |
+
"""
|
727 |
+
if inputs_embeds is None:
|
728 |
+
x = self.embed(input_ids)
|
729 |
+
else:
|
730 |
+
x = inputs_embeds
|
731 |
+
return self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
732 |
+
|
733 |
+
|
734 |
+
class ESMplusplusForMaskedLM(PreTrainedESMplusplusModel):
|
735 |
+
"""
|
736 |
+
ESM++ model for masked language modeling.
|
737 |
+
Implements the base ESM++ architecture with a masked language modeling head.
|
738 |
+
"""
|
739 |
+
config_class = ESMplusplusConfig
|
740 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
741 |
+
super().__init__(config, **kwargs)
|
742 |
+
self.config = config
|
743 |
+
self.vocab_size = config.vocab_size
|
744 |
+
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
745 |
+
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
746 |
+
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
|
747 |
+
self.ce_loss = nn.CrossEntropyLoss()
|
748 |
+
self.tokenizer = EsmSequenceTokenizer()
|
749 |
+
self.init_weights()
|
750 |
+
|
751 |
+
def get_input_embeddings(self):
|
752 |
+
return self.embed
|
753 |
+
|
754 |
+
def set_input_embeddings(self, value):
|
755 |
+
self.embed = value
|
756 |
+
|
757 |
+
def get_output_embeddings(self):
|
758 |
+
return self.sequence_head[-1]
|
759 |
+
|
760 |
+
def set_output_embeddings(self, new_embeddings):
|
761 |
+
self.sequence_head[-1] = new_embeddings
|
762 |
+
|
763 |
+
def forward(
|
764 |
+
self,
|
765 |
+
input_ids: Optional[torch.Tensor] = None,
|
766 |
+
attention_mask: Optional[torch.Tensor] = None,
|
767 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
768 |
+
labels: Optional[torch.Tensor] = None,
|
769 |
+
output_attentions: Optional[bool] = None,
|
770 |
+
output_hidden_states: Optional[bool] = None,
|
771 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
772 |
+
) -> ESMplusplusOutput:
|
773 |
+
"""Forward pass for masked language modeling.
|
774 |
+
|
775 |
+
Args:
|
776 |
+
input_ids: Input token IDs
|
777 |
+
attention_mask: Attention mask
|
778 |
+
inputs_embeds: Optional precomputed embeddings
|
779 |
+
labels: Optional labels for masked tokens
|
780 |
+
output_hidden_states: Whether to return all hidden states
|
781 |
+
output_attentions: Whether to return attention weights
|
782 |
+
|
783 |
+
Returns:
|
784 |
+
ESMplusplusOutput containing loss, logits, hidden states and attention weights
|
785 |
+
"""
|
786 |
+
if inputs_embeds is None:
|
787 |
+
x = self.embed(input_ids)
|
788 |
+
else:
|
789 |
+
x = inputs_embeds
|
790 |
+
output = self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
791 |
+
x = output.last_hidden_state
|
792 |
+
logits = self.sequence_head(x)
|
793 |
+
loss = None
|
794 |
+
if labels is not None:
|
795 |
+
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
|
796 |
+
return ESMplusplusOutput(
|
797 |
+
loss=loss,
|
798 |
+
logits=logits,
|
799 |
+
last_hidden_state=x,
|
800 |
+
hidden_states=output.hidden_states,
|
801 |
+
attentions=output.attentions,
|
802 |
+
)
|
803 |
+
|
804 |
+
|
805 |
+
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
806 |
+
"""
|
807 |
+
ESM++ model for sequence classification.
|
808 |
+
Extends the base ESM++ model with a classification head.
|
809 |
+
"""
|
810 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
811 |
+
super().__init__(config, **kwargs)
|
812 |
+
self.config = config
|
813 |
+
self.num_labels = config.num_labels
|
814 |
+
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
|
815 |
+
# Large intermediate projections help with sequence classification tasks (*4)
|
816 |
+
self.mse = nn.MSELoss()
|
817 |
+
self.ce = nn.CrossEntropyLoss()
|
818 |
+
self.bce = nn.BCEWithLogitsLoss()
|
819 |
+
self.init_weights()
|
820 |
+
|
821 |
+
def forward(
|
822 |
+
self,
|
823 |
+
input_ids: Optional[torch.Tensor] = None,
|
824 |
+
attention_mask: Optional[torch.Tensor] = None,
|
825 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
826 |
+
labels: Optional[torch.Tensor] = None,
|
827 |
+
output_attentions: Optional[bool] = None,
|
828 |
+
output_hidden_states: Optional[bool] = None,
|
829 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
830 |
+
) -> ESMplusplusOutput:
|
831 |
+
"""Forward pass for sequence classification.
|
832 |
+
|
833 |
+
Args:
|
834 |
+
input_ids: Input token IDs
|
835 |
+
attention_mask: Attention mask
|
836 |
+
inputs_embeds: Optional precomputed embeddings
|
837 |
+
labels: Optional labels for classification
|
838 |
+
output_hidden_states: Whether to return all hidden states
|
839 |
+
output_attentions: Whether to return attention weights
|
840 |
+
|
841 |
+
Returns:
|
842 |
+
ESMplusplusOutput containing loss, logits, and hidden states
|
843 |
+
"""
|
844 |
+
output = super().forward(
|
845 |
+
input_ids=input_ids,
|
846 |
+
attention_mask=attention_mask,
|
847 |
+
inputs_embeds=inputs_embeds,
|
848 |
+
labels=None,
|
849 |
+
output_attentions=output_attentions,
|
850 |
+
output_hidden_states=output_hidden_states
|
851 |
+
)
|
852 |
+
x = output.last_hidden_state
|
853 |
+
cls_features = x[:, 0, :]
|
854 |
+
mean_features = self.mean_pooling(x, attention_mask)
|
855 |
+
# we include mean pooling features to help with early convergence, the cost of this is basically zero
|
856 |
+
features = torch.cat([cls_features, mean_features], dim=-1)
|
857 |
+
logits = self.classifier(features)
|
858 |
+
loss = None
|
859 |
+
if labels is not None:
|
860 |
+
labels = labels.to(logits.device)
|
861 |
+
if self.config.problem_type is None:
|
862 |
+
if self.num_labels == 1:
|
863 |
+
self.config.problem_type = "regression"
|
864 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
865 |
+
self.config.problem_type = "single_label_classification"
|
866 |
+
else:
|
867 |
+
self.config.problem_type = "multi_label_classification"
|
868 |
+
|
869 |
+
if self.config.problem_type == "regression":
|
870 |
+
if self.num_labels == 1:
|
871 |
+
loss = self.mse(logits.flatten(), labels.flatten())
|
872 |
+
else:
|
873 |
+
loss = self.mse(logits, labels)
|
874 |
+
elif self.config.problem_type == "single_label_classification":
|
875 |
+
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
|
876 |
+
elif self.config.problem_type == "multi_label_classification":
|
877 |
+
loss = self.bce(logits, labels)
|
878 |
+
return ESMplusplusOutput(
|
879 |
+
loss=loss,
|
880 |
+
logits=logits,
|
881 |
+
last_hidden_state=x,
|
882 |
+
hidden_states=output.hidden_states,
|
883 |
+
)
|
884 |
+
|
885 |
+
|
886 |
+
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
887 |
+
"""
|
888 |
+
ESM++ model for token classification.
|
889 |
+
Extends the base ESM++ model with a token classification head.
|
890 |
+
"""
|
891 |
+
def __init__(self, config: ESMplusplusConfig):
|
892 |
+
super().__init__(config)
|
893 |
+
self.config = config
|
894 |
+
self.num_labels = config.num_labels
|
895 |
+
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
896 |
+
# Large intermediate projections help with sequence classification tasks (*4)
|
897 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
898 |
+
self.init_weights()
|
899 |
+
|
900 |
+
def forward(
|
901 |
+
self,
|
902 |
+
input_ids: Optional[torch.Tensor] = None,
|
903 |
+
attention_mask: Optional[torch.Tensor] = None,
|
904 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
905 |
+
labels: Optional[torch.Tensor] = None,
|
906 |
+
output_attentions: Optional[bool] = None,
|
907 |
+
output_hidden_states: Optional[bool] = None,
|
908 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
909 |
+
) -> ESMplusplusOutput:
|
910 |
+
"""Forward pass for token classification.
|
911 |
+
|
912 |
+
Args:
|
913 |
+
input_ids: Input token IDs
|
914 |
+
attention_mask: Attention mask
|
915 |
+
inputs_embeds: Optional precomputed embeddings
|
916 |
+
labels: Optional labels for token classification
|
917 |
+
output_hidden_states: Whether to return all hidden states
|
918 |
+
output_attentions: Whether to return attention weights
|
919 |
+
|
920 |
+
Returns:
|
921 |
+
ESMplusplusOutput containing loss, logits, and hidden states
|
922 |
+
"""
|
923 |
+
output = super().forward(
|
924 |
+
input_ids=input_ids,
|
925 |
+
attention_mask=attention_mask,
|
926 |
+
inputs_embeds=inputs_embeds,
|
927 |
+
labels=None,
|
928 |
+
output_attentions=output_attentions,
|
929 |
+
output_hidden_states=output_hidden_states
|
930 |
+
)
|
931 |
+
x = output.last_hidden_state
|
932 |
+
logits = self.classifier(x)
|
933 |
+
loss = None
|
934 |
+
if labels is not None:
|
935 |
+
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
936 |
+
return ESMplusplusOutput(
|
937 |
+
loss=loss,
|
938 |
+
logits=logits,
|
939 |
+
last_hidden_state=x,
|
940 |
+
hidden_states=output.hidden_states,
|
941 |
+
)
|
942 |
+
|
943 |
+
|
944 |
+
### Loading from EvolutionaryScale
|
945 |
+
@staticmethod
|
946 |
+
@cache
|
947 |
+
def data_root(model: str):
|
948 |
+
if "INFRA_PROVIDER" in os.environ:
|
949 |
+
return Path("")
|
950 |
+
# Try to download from hugginface if it doesn't exist
|
951 |
+
if model.startswith("esmc-300"):
|
952 |
+
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
|
953 |
+
elif model.startswith("esmc-600"):
|
954 |
+
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
|
955 |
+
else:
|
956 |
+
raise ValueError(f"{model=} is an invalid model name.")
|
957 |
+
return path
|
958 |
+
|
959 |
+
|
960 |
+
def ESMplusplus_300M(device: torch.device | str = "cpu"):
|
961 |
+
with torch.device(device):
|
962 |
+
config = ESMplusplusConfig(
|
963 |
+
hidden_size=960,
|
964 |
+
num_attention_heads=15,
|
965 |
+
num_hidden_layers=30,
|
966 |
+
)
|
967 |
+
model = ESMplusplusForMaskedLM(config)
|
968 |
+
state_dict = torch.load(
|
969 |
+
data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
|
970 |
+
map_location=device,
|
971 |
+
)
|
972 |
+
model.load_state_dict(state_dict)
|
973 |
+
return model
|
974 |
+
|
975 |
+
|
976 |
+
def ESMplusplus_600M(device: torch.device | str = "cpu"):
|
977 |
+
with torch.device(device):
|
978 |
+
config = ESMplusplusConfig(
|
979 |
+
hidden_size=1152,
|
980 |
+
num_attention_heads=18,
|
981 |
+
num_hidden_layers=36,
|
982 |
+
)
|
983 |
+
model = ESMplusplusForMaskedLM(config)
|
984 |
+
state_dict = torch.load(
|
985 |
+
data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
|
986 |
+
map_location=device,
|
987 |
+
)
|
988 |
+
model.load_state_dict(state_dict)
|
989 |
+
return model
|
990 |
+
|
991 |
+
|
992 |
+
### Tokenization
|
993 |
+
SEQUENCE_VOCAB = [
|
994 |
+
"<cls>", "<pad>", "<eos>", "<unk>",
|
995 |
+
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
|
996 |
+
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
|
997 |
+
"O", ".", "-", "|",
|
998 |
+
"<mask>",
|
999 |
+
]
|
1000 |
+
|
1001 |
+
class EsmSequenceTokenizer(PreTrainedTokenizerFast):
|
1002 |
+
model_input_names = ["input_ids", "attention_mask"]
|
1003 |
+
|
1004 |
+
def __init__(
|
1005 |
+
self,
|
1006 |
+
unk_token="<unk>",
|
1007 |
+
cls_token="<cls>",
|
1008 |
+
pad_token="<pad>",
|
1009 |
+
mask_token="<mask>",
|
1010 |
+
eos_token="<eos>",
|
1011 |
+
chain_break_token="|",
|
1012 |
+
**kwargs,
|
1013 |
+
):
|
1014 |
+
all_tokens = SEQUENCE_VOCAB
|
1015 |
+
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
|
1016 |
+
|
1017 |
+
# a character-level tokenizer is the same as BPE with no token merges
|
1018 |
+
bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
|
1019 |
+
tokenizer = Tokenizer(bpe)
|
1020 |
+
special_tokens = [
|
1021 |
+
cls_token,
|
1022 |
+
pad_token,
|
1023 |
+
mask_token,
|
1024 |
+
eos_token,
|
1025 |
+
chain_break_token,
|
1026 |
+
]
|
1027 |
+
self.cb_token = chain_break_token
|
1028 |
+
additional_special_tokens = [chain_break_token]
|
1029 |
+
|
1030 |
+
tokenizer.add_special_tokens(special_tokens)
|
1031 |
+
|
1032 |
+
# This is where we configure the automatic addition of special tokens when we call
|
1033 |
+
# tokenizer(text, add_special_tokens=True). Note that you can also configure how two
|
1034 |
+
# sequences are merged if you want.
|
1035 |
+
tokenizer.post_processor = TemplateProcessing( # type: ignore
|
1036 |
+
single="<cls> $A <eos>",
|
1037 |
+
special_tokens=[
|
1038 |
+
("<cls>", tokenizer.token_to_id("<cls>")),
|
1039 |
+
("<eos>", tokenizer.token_to_id("<eos>")),
|
1040 |
+
],
|
1041 |
+
)
|
1042 |
+
super().__init__(
|
1043 |
+
tokenizer_object=tokenizer,
|
1044 |
+
unk_token=unk_token,
|
1045 |
+
cls_token=cls_token,
|
1046 |
+
pad_token=pad_token,
|
1047 |
+
mask_token=mask_token,
|
1048 |
+
eos_token=eos_token,
|
1049 |
+
additional_special_tokens=additional_special_tokens,
|
1050 |
+
**kwargs,
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
# These are a footgun, we never use the `bos` token anywhere so we're just overriding it here.
|
1054 |
+
@property
|
1055 |
+
def bos_token(self):
|
1056 |
+
return self.cls_token
|
1057 |
+
|
1058 |
+
@property
|
1059 |
+
def bos_token_id(self):
|
1060 |
+
return self.cls_token_id
|
1061 |
+
|
1062 |
+
@property
|
1063 |
+
def chain_break_token(self):
|
1064 |
+
return self.cb_token
|
1065 |
+
|
1066 |
+
@property
|
1067 |
+
def chain_break_token_id(self):
|
1068 |
+
return self.convert_tokens_to_ids(self.chain_break_token)
|
1069 |
+
|
1070 |
+
@property
|
1071 |
+
def all_token_ids(self):
|
1072 |
+
return list(range(self.vocab_size))
|
1073 |
+
|
1074 |
+
@property
|
1075 |
+
def special_token_ids(self):
|
1076 |
+
return self.all_special_ids
|