Ubuntu
commited on
Commit
·
91597cf
1
Parent(s):
b93f992
init
Browse files- LICENSE +71 -0
- README.md +168 -0
- README_zh.md +152 -0
- model_index.json +24 -0
- scheduler/scheduler_config.json +18 -0
- text_encoder/config.json +32 -0
- text_encoder/model-00001-of-00002.safetensors +3 -0
- text_encoder/model-00002-of-00002.safetensors +3 -0
- text_encoder/model.safetensors.index.fp16.json +226 -0
- text_encoder/model.safetensors.index.json +226 -0
- tokenizer/added_tokens.json +102 -0
- tokenizer/special_tokens_map.json +125 -0
- tokenizer/spiece.model +3 -0
- tokenizer/tokenizer_config.json +940 -0
- transformer/config.json +27 -0
- transformer/diffusion_pytorch_model.safetensors +3 -0
- vae/config.json +39 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
LICENSE
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The CogVideoX License
|
2 |
+
|
3 |
+
1. Definitions
|
4 |
+
|
5 |
+
“Licensor” means the CogVideoX Model Team that distributes its Software.
|
6 |
+
|
7 |
+
“Software” means the CogVideoX model parameters made available under this license.
|
8 |
+
|
9 |
+
2. License Grant
|
10 |
+
|
11 |
+
Under the terms and conditions of this license, the licensor hereby grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license. The intellectual property rights of the generated content belong to the user to the extent permitted by applicable local laws.
|
12 |
+
This license allows you to freely use all open-source models in this repository for academic research. Users who wish to use the models for commercial purposes must register and obtain a basic commercial license in https://open.bigmodel.cn/mla/form .
|
13 |
+
Users who have registered and obtained the basic commercial license can use the models for commercial activities for free, but must comply with all terms and conditions of this license. Additionally, the number of service users (visits) for your commercial activities must not exceed 1 million visits per month.
|
14 |
+
If the number of service users (visits) for your commercial activities exceeds 1 million visits per month, you need to contact our business team to obtain more commercial licenses.
|
15 |
+
The above copyright statement and this license statement should be included in all copies or significant portions of this software.
|
16 |
+
|
17 |
+
3. Restriction
|
18 |
+
|
19 |
+
You will not use, copy, modify, merge, publish, distribute, reproduce, or create derivative works of the Software, in whole or in part, for any military, or illegal purposes.
|
20 |
+
|
21 |
+
You will not use the Software for any act that may undermine China's national security and national unity, harm the public interest of society, or infringe upon the rights and interests of human beings.
|
22 |
+
|
23 |
+
4. Disclaimer
|
24 |
+
|
25 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
26 |
+
|
27 |
+
5. Limitation of Liability
|
28 |
+
|
29 |
+
EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT, NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
30 |
+
|
31 |
+
6. Dispute Resolution
|
32 |
+
|
33 |
+
This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
|
34 |
+
|
35 |
+
Note that the license is subject to update to a more comprehensive version. For any questions related to the license and copyright, please contact us at [email protected].
|
36 |
+
|
37 |
+
1. 定义
|
38 |
+
|
39 |
+
“许可方”是指分发其软件的 CogVideoX 模型团队。
|
40 |
+
|
41 |
+
“软件”是指根据本许可提供的 CogVideoX 模型参数。
|
42 |
+
|
43 |
+
2. 许可授予
|
44 |
+
|
45 |
+
根据本许可的条款和条件,许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。生成内容的知识产权所属,可根据适用当地法律的规定,在法律允许的范围内由用户享有生成内容的知识产权或其他权利。
|
46 |
+
本许可允许您免费使用本仓库中的所有开源模型进行学术研究。对于希望将模型用于商业目的的用户,需在 https://open.bigmodel.cn/mla/form 完成登记并获得基础商用授权。
|
47 |
+
|
48 |
+
经过登记并获得基础商用授权的用户可以免费使用本模型进行商业活动,但必须遵守本许可的所有条款和条件。
|
49 |
+
在本许可证下,您的商业活动的服务用户数量(访问量)不得超过100万人次访问 / 每月。如果超过,您需要与我们的商业团队联系以获得更多的商业许可。
|
50 |
+
上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。
|
51 |
+
|
52 |
+
3.限制
|
53 |
+
|
54 |
+
您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建本软件的全部或部分衍生作品。
|
55 |
+
|
56 |
+
您不得利用本软件从事任何危害国家安全和国家统一、危害社会公共利益、侵犯人身权益的行为。
|
57 |
+
|
58 |
+
4.免责声明
|
59 |
+
|
60 |
+
本软件“按原样”提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途的适用性和非侵权性的保证。
|
61 |
+
在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,由软件或软件的使用或其他交易引起、由软件引起或与之相关 软件。
|
62 |
+
|
63 |
+
5. 责任限制
|
64 |
+
|
65 |
+
除适用��律禁止的范围外,在任何情况下且根据任何法律理论,无论是基于侵权行为、疏忽、合同、责任或其他原因,任何许可方均不对您承担任何直接、间接、特殊、偶然、示范性、 或间接损害,或任何其他商业损失,即使许可人已被告知此类损害的可能性。
|
66 |
+
|
67 |
+
6.争议解决
|
68 |
+
|
69 |
+
本许可受中华人民共和国法律管辖并按其解释。 因本许可引起的或与本许可有关的任何争议应提交北京市海淀区人民法院。
|
70 |
+
|
71 |
+
请注意,许可证可能会更新到更全面的版本。 有关许可和版权的任何问题,请通过 [email protected] 与我们联系。
|
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: cogvideox
|
4 |
+
license_link: https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- cogvideox
|
9 |
+
- video-generation
|
10 |
+
- thudm
|
11 |
+
inference: false
|
12 |
+
---
|
13 |
+
|
14 |
+
# CogVideoX-2B
|
15 |
+
|
16 |
+
<p style="text-align: center;">
|
17 |
+
<div align="center">
|
18 |
+
<img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/>
|
19 |
+
</div>
|
20 |
+
<p align="center">
|
21 |
+
<a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README_zh.md">📄 中文阅读</a> |
|
22 |
+
<a href="https://github.com/THUDM/CogVideo">🌐 Github</a> |
|
23 |
+
<a href="#">📜 arxiv (coming soon) </a>
|
24 |
+
</p>
|
25 |
+
|
26 |
+
## Demo Show
|
27 |
+
|
28 |
+
<!DOCTYPE html>
|
29 |
+
<html lang="en">
|
30 |
+
<head>
|
31 |
+
<meta charset="UTF-8">
|
32 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
33 |
+
<title>Video Gallery with Captions</title>
|
34 |
+
<style>
|
35 |
+
.video-container {
|
36 |
+
display: flex;
|
37 |
+
flex-wrap: wrap;
|
38 |
+
justify-content: space-around;
|
39 |
+
}
|
40 |
+
.video-item {
|
41 |
+
width: 45%;
|
42 |
+
margin-bottom: 20px;
|
43 |
+
transition: transform 0.3s;
|
44 |
+
}
|
45 |
+
.video-item:hover {
|
46 |
+
transform: scale(1.1);
|
47 |
+
}
|
48 |
+
.caption {
|
49 |
+
text-align: center;
|
50 |
+
margin-top: 10px;
|
51 |
+
font-size: 11px;
|
52 |
+
}
|
53 |
+
</style>
|
54 |
+
</head>
|
55 |
+
<body>
|
56 |
+
<div class="video-container">
|
57 |
+
<div class="video-item">
|
58 |
+
<video width="100%" controls>
|
59 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/1.mp4" type="video/mp4">
|
60 |
+
</video>
|
61 |
+
<div class="caption">A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</div>
|
62 |
+
</div>
|
63 |
+
<div class="video-item">
|
64 |
+
<video width="100%" controls>
|
65 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/2.mp4" type="video/mp4">
|
66 |
+
</video>
|
67 |
+
<div class="caption">The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</div>
|
68 |
+
</div>
|
69 |
+
<div class="video-item">
|
70 |
+
<video width="100%" controls>
|
71 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/3.mp4" type="video/mp4">
|
72 |
+
</video>
|
73 |
+
<div class="caption">A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</div>
|
74 |
+
</div>
|
75 |
+
<div class="video-item">
|
76 |
+
<video width="100%" controls>
|
77 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/4.mp4" type="video/mp4">
|
78 |
+
</video>
|
79 |
+
<div class="caption"> In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</div>
|
80 |
+
</div>
|
81 |
+
</div>
|
82 |
+
</body>
|
83 |
+
</html>
|
84 |
+
|
85 |
+
## Model Introduction
|
86 |
+
|
87 |
+
CogVideoX is an open-source video generation model that shares the same origins as [清影](https://chatglm.cn/video).
|
88 |
+
The table below provides a list of the video generation models we currently offer, along with their basic information.
|
89 |
+
|
90 |
+
| Model Name | CogVideoX-2B (Current Repos) |
|
91 |
+
|--------------------------------------------|------------------------------|
|
92 |
+
| Supported Prompt Language | English |
|
93 |
+
| GPU Memory Required for Inference | 21.6GB |
|
94 |
+
| GPU Memory Required for Fine-tuning (bs=1) | 46.2GB |
|
95 |
+
| Prompt Length | 226 Tokens |
|
96 |
+
| Video Length | 6 seconds |
|
97 |
+
| Frames Per Second | 8 frames |
|
98 |
+
| Resolution | 720 * 480 |
|
99 |
+
| Positional Embeddings | Sinusoidal |
|
100 |
+
| Quantized Inference | Not Supported |
|
101 |
+
| Multi-card Inference | Not Supported |
|
102 |
+
|
103 |
+
## Quick Start 🤗
|
104 |
+
|
105 |
+
This model supports deployment using the huggingface diffusers library. You can deploy it by following these steps.
|
106 |
+
|
107 |
+
**We recommend that you visit our [GitHub](https://github.com/THUDM/CogVideo) and check out the relevant prompt
|
108 |
+
optimizations and conversions to get a better experience.**
|
109 |
+
|
110 |
+
1. Install the required dependencies
|
111 |
+
|
112 |
+
```shell
|
113 |
+
pip install --upgrade opencv-python transformers
|
114 |
+
pip install git+https://github.com/huggingface/diffusers.git@32da2e7673cfe0475a47c41b859f5fbd8bf17a40#egg=diffusers # Still in PR
|
115 |
+
```
|
116 |
+
|
117 |
+
2. Run the code
|
118 |
+
|
119 |
+
```python
|
120 |
+
import torch
|
121 |
+
from diffusers import CogVideoXPipeline
|
122 |
+
from diffusers.utils import export_to_video
|
123 |
+
|
124 |
+
prompt = "A girl ridding a bike"
|
125 |
+
|
126 |
+
pipe = CogVideoXPipeline.from_pretrained(
|
127 |
+
"THUDM/CogVideoX-2b",
|
128 |
+
torch_dtype=torch.float16
|
129 |
+
).to("cuda")
|
130 |
+
|
131 |
+
prompt_embeds, _ = pipe.encode_prompt(
|
132 |
+
prompt=prompt,
|
133 |
+
do_classifier_free_guidance=True,
|
134 |
+
num_videos_per_prompt=1,
|
135 |
+
max_sequence_length=226,
|
136 |
+
device="cuda",
|
137 |
+
dtype=torch.float16,
|
138 |
+
)
|
139 |
+
|
140 |
+
video = pipe(
|
141 |
+
num_inference_steps=50,
|
142 |
+
guidance_scale=6,
|
143 |
+
prompt_embeds=prompt_embeds,
|
144 |
+
).frames[0]
|
145 |
+
|
146 |
+
export_to_video(video, "output.mp4", fps=8)
|
147 |
+
```
|
148 |
+
|
149 |
+
If the generated model appears “all green” and not viewable in the default MAC player, it is a normal phenomenon (due to
|
150 |
+
OpenCV saving video issues). Simply use a different player to view the video.
|
151 |
+
|
152 |
+
## Explore the Model
|
153 |
+
|
154 |
+
Welcome to our [github](https://github.com/THUDM/CogVideo), where you will find:
|
155 |
+
|
156 |
+
1. More detailed technical details and code explanation.
|
157 |
+
2. Optimization and conversion of prompt words.
|
158 |
+
3. Reasoning and fine-tuning of SAT version models, and even pre-release.
|
159 |
+
4. Project update log dynamics, more interactive opportunities.
|
160 |
+
5. CogVideoX toolchain to help you better use the model.
|
161 |
+
|
162 |
+
## Model License
|
163 |
+
|
164 |
+
This model is released under the [CogVideoX LICENSE](LICENSE).
|
165 |
+
|
166 |
+
## Citation
|
167 |
+
|
168 |
+
The technical report is still being written, stay tuned.
|
README_zh.md
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CogVideoX-2B
|
2 |
+
|
3 |
+
<p style="text-align: center;">
|
4 |
+
<div align="center">
|
5 |
+
<img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/>
|
6 |
+
</div>
|
7 |
+
<p align="center">
|
8 |
+
<a href="https://huggingface.co/THUDM/CogVideoX-2b/blob/main/README.md">📄 Read in English</a> |
|
9 |
+
<a href="https://github.com/THUDM/CogVideo">🌐 Github</a> |
|
10 |
+
<a href="#">📜 arxiv (即将发布) </a>
|
11 |
+
</p>
|
12 |
+
|
13 |
+
## 作品案例
|
14 |
+
|
15 |
+
<!DOCTYPE html>
|
16 |
+
<html lang="en">
|
17 |
+
<head>
|
18 |
+
<meta charset="UTF-8">
|
19 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
20 |
+
<title>Video Gallery with Captions</title>
|
21 |
+
<style>
|
22 |
+
.video-container {
|
23 |
+
display: flex;
|
24 |
+
flex-wrap: wrap;
|
25 |
+
justify-content: space-around;
|
26 |
+
}
|
27 |
+
.video-item {
|
28 |
+
width: 45%;
|
29 |
+
margin-bottom: 20px;
|
30 |
+
transition: transform 0.3s;
|
31 |
+
}
|
32 |
+
.video-item:hover {
|
33 |
+
transform: scale(1.1);
|
34 |
+
}
|
35 |
+
.caption {
|
36 |
+
text-align: center;
|
37 |
+
margin-top: 10px;
|
38 |
+
font-size: 11px;
|
39 |
+
}
|
40 |
+
</style>
|
41 |
+
</head>
|
42 |
+
<body>
|
43 |
+
<div class="video-container">
|
44 |
+
<div class="video-item">
|
45 |
+
<video width="100%" controls>
|
46 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/1.mp4" type="video/mp4">
|
47 |
+
</video>
|
48 |
+
<div class="caption">A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</div>
|
49 |
+
</div>
|
50 |
+
<div class="video-item">
|
51 |
+
<video width="100%" controls>
|
52 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/2.mp4" type="video/mp4">
|
53 |
+
</video>
|
54 |
+
<div class="caption">The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</div>
|
55 |
+
</div>
|
56 |
+
<div class="video-item">
|
57 |
+
<video width="100%" controls>
|
58 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/3.mp4" type="video/mp4">
|
59 |
+
</video>
|
60 |
+
<div class="caption">A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</div>
|
61 |
+
</div>
|
62 |
+
<div class="video-item">
|
63 |
+
<video width="100%" controls>
|
64 |
+
<source src="https://github.com/THUDM/CogVideo/raw/main/resources/videos/4.mp4" type="video/mp4">
|
65 |
+
</video>
|
66 |
+
<div class="caption"> In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</div>
|
67 |
+
</div>
|
68 |
+
</div>
|
69 |
+
</body>
|
70 |
+
</html>
|
71 |
+
|
72 |
+
## 模型介绍
|
73 |
+
|
74 |
+
CogVideoX是 [清影](https://chatglm.cn/video) 同源的开源版本视频生成模型。下表战展示目前我们提供的视频生成模型列表,以及相关基础信息。
|
75 |
+
|
76 |
+
| Model Name | CogVideoX-2B (当前仓库) |
|
77 |
+
|---------------|---------------------|
|
78 |
+
| 提示词语言 | English |
|
79 |
+
| 推理显存消耗 | 21.6GB |
|
80 |
+
| 微调显存消耗 (bs=1) | 46.2GB |
|
81 |
+
| 提示词长度上限 | 226 Tokens |
|
82 |
+
| 视频生成长度 | 6 seconds |
|
83 |
+
| 视频生成帧率 (每秒) | 8 frames |
|
84 |
+
| 视频生成分辨率 | 720 * 480 |
|
85 |
+
| 位置编码 | Sinusoidal |
|
86 |
+
| 量化 | 不支持 |
|
87 |
+
| 多卡推理 | 不支持 |
|
88 |
+
|
89 |
+
## 快速上手 🤗
|
90 |
+
|
91 |
+
本模型已经支持使用 huggingface 的 diffusers ��进行部署,你可以按照以下步骤进行部署。
|
92 |
+
|
93 |
+
**我们推荐您进入我们的 [github](https://github.com/THUDM/CogVideo) 并查看相关的提示词优化和转换,以获得更好的体验。**
|
94 |
+
|
95 |
+
1. 安装对应的依赖
|
96 |
+
|
97 |
+
```shell
|
98 |
+
pip install --upgrade opencv-python transformers
|
99 |
+
pip install git+https://github.com/huggingface/diffusers.git@32da2e7673cfe0475a47c41b859f5fbd8bf17a40#egg=diffusers # Still in PR
|
100 |
+
```
|
101 |
+
|
102 |
+
2. 运行代码
|
103 |
+
|
104 |
+
```python
|
105 |
+
import torch
|
106 |
+
from diffusers import CogVideoXPipeline
|
107 |
+
from diffusers.utils import export_to_video
|
108 |
+
|
109 |
+
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
|
110 |
+
|
111 |
+
pipe = CogVideoXPipeline.from_pretrained(
|
112 |
+
"THUDM/CogVideoX-2b",
|
113 |
+
torch_dtype=torch.float16
|
114 |
+
).to("cuda")
|
115 |
+
|
116 |
+
prompt_embeds, _ = pipe.encode_prompt(
|
117 |
+
prompt=prompt,
|
118 |
+
do_classifier_free_guidance=True,
|
119 |
+
num_videos_per_prompt=1,
|
120 |
+
max_sequence_length=226,
|
121 |
+
device="cuda",
|
122 |
+
dtype=torch.float16,
|
123 |
+
)
|
124 |
+
|
125 |
+
video = pipe(
|
126 |
+
num_inference_steps=50,
|
127 |
+
guidance_scale=6,
|
128 |
+
prompt_embeds=prompt_embeds,
|
129 |
+
).frames[0]
|
130 |
+
|
131 |
+
export_to_video(video, "output.mp4", fps=8)
|
132 |
+
```
|
133 |
+
|
134 |
+
如果您生成的模型在 MAC 默认播放器上表现为 "全绿" 无法正常观看,属于正常现象 (OpenCV保存视频问题),仅需更换一个播放器观看。
|
135 |
+
|
136 |
+
## 深入研究
|
137 |
+
|
138 |
+
欢迎进入我们的 [github](https://github.com/THUDM/CogVideo),你将获得:
|
139 |
+
|
140 |
+
1. 更加详细的技术细节介绍和代码解释。
|
141 |
+
2. 提示词的优化和转换。
|
142 |
+
3. SAT版本模型进行推理和微调,甚至预发布。
|
143 |
+
4. 项目更新日志动态,更多互动机会。
|
144 |
+
5. CogVideoX 工具链,帮助您更好的使用模型。
|
145 |
+
|
146 |
+
## 模型协议
|
147 |
+
|
148 |
+
该模型根据 [CogVideoX LICENSE](LICENSE) 许可证发布。
|
149 |
+
|
150 |
+
## 引用
|
151 |
+
|
152 |
+
技术报告仍在撰写中,敬请期待
|
model_index.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "CogVideoXPipeline",
|
3 |
+
"_diffusers_version": "0.30.0.dev0",
|
4 |
+
"scheduler": [
|
5 |
+
"diffusers",
|
6 |
+
"CogVideoXDDIMScheduler"
|
7 |
+
],
|
8 |
+
"text_encoder": [
|
9 |
+
"transformers",
|
10 |
+
"T5EncoderModel"
|
11 |
+
],
|
12 |
+
"tokenizer": [
|
13 |
+
"transformers",
|
14 |
+
"T5Tokenizer"
|
15 |
+
],
|
16 |
+
"transformer": [
|
17 |
+
"diffusers",
|
18 |
+
"CogVideoXTransformer3DModel"
|
19 |
+
],
|
20 |
+
"vae": [
|
21 |
+
"diffusers",
|
22 |
+
"AutoencoderKLCogVideoX"
|
23 |
+
]
|
24 |
+
}
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "CogVideoXDDIMScheduler",
|
3 |
+
"_diffusers_version": "0.30.0.dev0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"num_train_timesteps": 1000,
|
10 |
+
"prediction_type": "v_prediction",
|
11 |
+
"rescale_betas_zero_snr": true,
|
12 |
+
"sample_max_value": 1.0,
|
13 |
+
"set_alpha_to_one": true,
|
14 |
+
"snr_shift_scale": 3.0,
|
15 |
+
"steps_offset": 0,
|
16 |
+
"timestep_spacing": "linspace",
|
17 |
+
"trained_betas": null
|
18 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/t5-v1_1-xxl",
|
3 |
+
"architectures": [
|
4 |
+
"T5EncoderModel"
|
5 |
+
],
|
6 |
+
"classifier_dropout": 0.0,
|
7 |
+
"d_ff": 10240,
|
8 |
+
"d_kv": 64,
|
9 |
+
"d_model": 4096,
|
10 |
+
"decoder_start_token_id": 0,
|
11 |
+
"dense_act_fn": "gelu_new",
|
12 |
+
"dropout_rate": 0.1,
|
13 |
+
"eos_token_id": 1,
|
14 |
+
"feed_forward_proj": "gated-gelu",
|
15 |
+
"initializer_factor": 1.0,
|
16 |
+
"is_encoder_decoder": true,
|
17 |
+
"is_gated_act": true,
|
18 |
+
"layer_norm_epsilon": 1e-06,
|
19 |
+
"model_type": "t5",
|
20 |
+
"num_decoder_layers": 24,
|
21 |
+
"num_heads": 64,
|
22 |
+
"num_layers": 24,
|
23 |
+
"output_past": true,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"relative_attention_max_distance": 128,
|
26 |
+
"relative_attention_num_buckets": 32,
|
27 |
+
"tie_word_embeddings": false,
|
28 |
+
"torch_dtype": "float16",
|
29 |
+
"transformers_version": "4.42.4",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 32128
|
32 |
+
}
|
text_encoder/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f2751ceeb2a96edd693e539dc5d6bba0b8d3814f49a9b3798403a0cec4b2e3d
|
3 |
+
size 4994582104
|
text_encoder/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f63154532130422309532ff56f11945fbea8266c958e3133e8e5aef85c6293c7
|
3 |
+
size 4530066248
|
text_encoder/model.safetensors.index.fp16.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9524621312
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"encoder.block.0.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
7 |
+
"encoder.block.0.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
8 |
+
"encoder.block.0.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
9 |
+
"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "model.fp16-00001-of-00002.safetensors",
|
10 |
+
"encoder.block.0.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
11 |
+
"encoder.block.0.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
12 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
13 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
14 |
+
"encoder.block.0.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
15 |
+
"encoder.block.0.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
16 |
+
"encoder.block.1.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
17 |
+
"encoder.block.1.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
18 |
+
"encoder.block.1.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
19 |
+
"encoder.block.1.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
20 |
+
"encoder.block.1.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
21 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
22 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
23 |
+
"encoder.block.1.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
24 |
+
"encoder.block.1.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
25 |
+
"encoder.block.10.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
26 |
+
"encoder.block.10.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
27 |
+
"encoder.block.10.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
28 |
+
"encoder.block.10.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
29 |
+
"encoder.block.10.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
30 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
31 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
32 |
+
"encoder.block.10.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
33 |
+
"encoder.block.10.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
34 |
+
"encoder.block.11.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
35 |
+
"encoder.block.11.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
36 |
+
"encoder.block.11.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
37 |
+
"encoder.block.11.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
38 |
+
"encoder.block.11.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
39 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
40 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
41 |
+
"encoder.block.11.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
42 |
+
"encoder.block.11.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
43 |
+
"encoder.block.12.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
44 |
+
"encoder.block.12.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
45 |
+
"encoder.block.12.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
46 |
+
"encoder.block.12.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
47 |
+
"encoder.block.12.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
48 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
49 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
50 |
+
"encoder.block.12.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
51 |
+
"encoder.block.12.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
52 |
+
"encoder.block.13.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
53 |
+
"encoder.block.13.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
54 |
+
"encoder.block.13.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
55 |
+
"encoder.block.13.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
56 |
+
"encoder.block.13.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
57 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
58 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
59 |
+
"encoder.block.13.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
60 |
+
"encoder.block.13.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
61 |
+
"encoder.block.14.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
62 |
+
"encoder.block.14.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
63 |
+
"encoder.block.14.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
64 |
+
"encoder.block.14.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
65 |
+
"encoder.block.14.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
66 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
67 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
68 |
+
"encoder.block.14.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
69 |
+
"encoder.block.14.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
70 |
+
"encoder.block.15.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
71 |
+
"encoder.block.15.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
72 |
+
"encoder.block.15.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
73 |
+
"encoder.block.15.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
74 |
+
"encoder.block.15.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
75 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
76 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
77 |
+
"encoder.block.15.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
78 |
+
"encoder.block.15.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
79 |
+
"encoder.block.16.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
80 |
+
"encoder.block.16.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
81 |
+
"encoder.block.16.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
82 |
+
"encoder.block.16.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
83 |
+
"encoder.block.16.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
84 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
85 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
86 |
+
"encoder.block.16.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
87 |
+
"encoder.block.16.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
88 |
+
"encoder.block.17.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
89 |
+
"encoder.block.17.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
90 |
+
"encoder.block.17.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
91 |
+
"encoder.block.17.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
92 |
+
"encoder.block.17.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
93 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
94 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
95 |
+
"encoder.block.17.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
96 |
+
"encoder.block.17.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
97 |
+
"encoder.block.18.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
98 |
+
"encoder.block.18.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
99 |
+
"encoder.block.18.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
100 |
+
"encoder.block.18.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
101 |
+
"encoder.block.18.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
102 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
103 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
104 |
+
"encoder.block.18.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
105 |
+
"encoder.block.18.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
106 |
+
"encoder.block.19.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
107 |
+
"encoder.block.19.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
108 |
+
"encoder.block.19.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
109 |
+
"encoder.block.19.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
110 |
+
"encoder.block.19.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
111 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
112 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
113 |
+
"encoder.block.19.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
114 |
+
"encoder.block.19.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
115 |
+
"encoder.block.2.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
116 |
+
"encoder.block.2.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
117 |
+
"encoder.block.2.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
118 |
+
"encoder.block.2.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
119 |
+
"encoder.block.2.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
120 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
121 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
122 |
+
"encoder.block.2.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
123 |
+
"encoder.block.2.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
124 |
+
"encoder.block.20.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
125 |
+
"encoder.block.20.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
126 |
+
"encoder.block.20.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
127 |
+
"encoder.block.20.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
128 |
+
"encoder.block.20.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
129 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
130 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
131 |
+
"encoder.block.20.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
132 |
+
"encoder.block.20.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
133 |
+
"encoder.block.21.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
134 |
+
"encoder.block.21.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
135 |
+
"encoder.block.21.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
136 |
+
"encoder.block.21.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
137 |
+
"encoder.block.21.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
138 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
139 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
140 |
+
"encoder.block.21.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
141 |
+
"encoder.block.21.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
142 |
+
"encoder.block.22.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
143 |
+
"encoder.block.22.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
144 |
+
"encoder.block.22.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
145 |
+
"encoder.block.22.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
146 |
+
"encoder.block.22.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
147 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
148 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
149 |
+
"encoder.block.22.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
150 |
+
"encoder.block.22.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
151 |
+
"encoder.block.23.layer.0.SelfAttention.k.weight": "model.fp16-00002-of-00002.safetensors",
|
152 |
+
"encoder.block.23.layer.0.SelfAttention.o.weight": "model.fp16-00002-of-00002.safetensors",
|
153 |
+
"encoder.block.23.layer.0.SelfAttention.q.weight": "model.fp16-00002-of-00002.safetensors",
|
154 |
+
"encoder.block.23.layer.0.SelfAttention.v.weight": "model.fp16-00002-of-00002.safetensors",
|
155 |
+
"encoder.block.23.layer.0.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
156 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00002-of-00002.safetensors",
|
157 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00002-of-00002.safetensors",
|
158 |
+
"encoder.block.23.layer.1.DenseReluDense.wo.weight": "model.fp16-00002-of-00002.safetensors",
|
159 |
+
"encoder.block.23.layer.1.layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
160 |
+
"encoder.block.3.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
161 |
+
"encoder.block.3.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
162 |
+
"encoder.block.3.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
163 |
+
"encoder.block.3.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
164 |
+
"encoder.block.3.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
165 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
166 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
167 |
+
"encoder.block.3.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
168 |
+
"encoder.block.3.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
169 |
+
"encoder.block.4.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
170 |
+
"encoder.block.4.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
171 |
+
"encoder.block.4.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
172 |
+
"encoder.block.4.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
173 |
+
"encoder.block.4.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
174 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
175 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
176 |
+
"encoder.block.4.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
177 |
+
"encoder.block.4.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
178 |
+
"encoder.block.5.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
179 |
+
"encoder.block.5.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
180 |
+
"encoder.block.5.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
181 |
+
"encoder.block.5.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
182 |
+
"encoder.block.5.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
183 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
184 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
185 |
+
"encoder.block.5.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
186 |
+
"encoder.block.5.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
187 |
+
"encoder.block.6.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
188 |
+
"encoder.block.6.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
189 |
+
"encoder.block.6.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
190 |
+
"encoder.block.6.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
191 |
+
"encoder.block.6.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
192 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
193 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
194 |
+
"encoder.block.6.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
195 |
+
"encoder.block.6.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
196 |
+
"encoder.block.7.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
197 |
+
"encoder.block.7.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
198 |
+
"encoder.block.7.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
199 |
+
"encoder.block.7.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
200 |
+
"encoder.block.7.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
201 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
202 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
203 |
+
"encoder.block.7.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
204 |
+
"encoder.block.7.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
205 |
+
"encoder.block.8.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
206 |
+
"encoder.block.8.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
207 |
+
"encoder.block.8.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
208 |
+
"encoder.block.8.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
209 |
+
"encoder.block.8.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
210 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
211 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
212 |
+
"encoder.block.8.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
213 |
+
"encoder.block.8.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
214 |
+
"encoder.block.9.layer.0.SelfAttention.k.weight": "model.fp16-00001-of-00002.safetensors",
|
215 |
+
"encoder.block.9.layer.0.SelfAttention.o.weight": "model.fp16-00001-of-00002.safetensors",
|
216 |
+
"encoder.block.9.layer.0.SelfAttention.q.weight": "model.fp16-00001-of-00002.safetensors",
|
217 |
+
"encoder.block.9.layer.0.SelfAttention.v.weight": "model.fp16-00001-of-00002.safetensors",
|
218 |
+
"encoder.block.9.layer.0.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
219 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "model.fp16-00001-of-00002.safetensors",
|
220 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "model.fp16-00001-of-00002.safetensors",
|
221 |
+
"encoder.block.9.layer.1.DenseReluDense.wo.weight": "model.fp16-00001-of-00002.safetensors",
|
222 |
+
"encoder.block.9.layer.1.layer_norm.weight": "model.fp16-00001-of-00002.safetensors",
|
223 |
+
"encoder.final_layer_norm.weight": "model.fp16-00002-of-00002.safetensors",
|
224 |
+
"shared.weight": "model.fp16-00001-of-00002.safetensors"
|
225 |
+
}
|
226 |
+
}
|
text_encoder/model.safetensors.index.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9524621312
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"encoder.block.0.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"encoder.block.0.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"encoder.block.0.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"encoder.block.0.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"encoder.block.0.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"encoder.block.0.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"encoder.block.0.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"encoder.block.1.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"encoder.block.1.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"encoder.block.1.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"encoder.block.1.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"encoder.block.1.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"encoder.block.1.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"encoder.block.1.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"encoder.block.10.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"encoder.block.10.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"encoder.block.10.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"encoder.block.10.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"encoder.block.10.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"encoder.block.10.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"encoder.block.10.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"encoder.block.11.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"encoder.block.11.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"encoder.block.11.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"encoder.block.11.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"encoder.block.11.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"encoder.block.11.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"encoder.block.11.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"encoder.block.12.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"encoder.block.12.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
45 |
+
"encoder.block.12.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"encoder.block.12.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"encoder.block.12.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
48 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
49 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
50 |
+
"encoder.block.12.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
51 |
+
"encoder.block.12.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
52 |
+
"encoder.block.13.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
53 |
+
"encoder.block.13.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
54 |
+
"encoder.block.13.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
55 |
+
"encoder.block.13.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
56 |
+
"encoder.block.13.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
57 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
58 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
59 |
+
"encoder.block.13.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
60 |
+
"encoder.block.13.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
61 |
+
"encoder.block.14.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
62 |
+
"encoder.block.14.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
63 |
+
"encoder.block.14.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
64 |
+
"encoder.block.14.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
65 |
+
"encoder.block.14.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
66 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
67 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
68 |
+
"encoder.block.14.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
69 |
+
"encoder.block.14.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
70 |
+
"encoder.block.15.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
71 |
+
"encoder.block.15.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
72 |
+
"encoder.block.15.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
73 |
+
"encoder.block.15.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
74 |
+
"encoder.block.15.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
75 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
76 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
77 |
+
"encoder.block.15.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
78 |
+
"encoder.block.15.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
79 |
+
"encoder.block.16.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
80 |
+
"encoder.block.16.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
81 |
+
"encoder.block.16.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
82 |
+
"encoder.block.16.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
83 |
+
"encoder.block.16.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
84 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
85 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
86 |
+
"encoder.block.16.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
87 |
+
"encoder.block.16.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
88 |
+
"encoder.block.17.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
89 |
+
"encoder.block.17.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
90 |
+
"encoder.block.17.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
91 |
+
"encoder.block.17.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
92 |
+
"encoder.block.17.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
93 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
94 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
95 |
+
"encoder.block.17.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
96 |
+
"encoder.block.17.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
97 |
+
"encoder.block.18.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
98 |
+
"encoder.block.18.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
99 |
+
"encoder.block.18.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
100 |
+
"encoder.block.18.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
101 |
+
"encoder.block.18.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
102 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
103 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
104 |
+
"encoder.block.18.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
105 |
+
"encoder.block.18.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
106 |
+
"encoder.block.19.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
107 |
+
"encoder.block.19.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
108 |
+
"encoder.block.19.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
109 |
+
"encoder.block.19.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
110 |
+
"encoder.block.19.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
111 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
112 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
113 |
+
"encoder.block.19.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
114 |
+
"encoder.block.19.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
115 |
+
"encoder.block.2.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"encoder.block.2.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"encoder.block.2.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"encoder.block.2.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"encoder.block.2.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"encoder.block.2.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"encoder.block.2.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"encoder.block.20.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
125 |
+
"encoder.block.20.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"encoder.block.20.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
127 |
+
"encoder.block.20.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
128 |
+
"encoder.block.20.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
129 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
130 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
131 |
+
"encoder.block.20.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
132 |
+
"encoder.block.20.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
133 |
+
"encoder.block.21.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
134 |
+
"encoder.block.21.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"encoder.block.21.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"encoder.block.21.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"encoder.block.21.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"encoder.block.21.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"encoder.block.21.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"encoder.block.22.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"encoder.block.22.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"encoder.block.22.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"encoder.block.22.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"encoder.block.22.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
147 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
149 |
+
"encoder.block.22.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"encoder.block.22.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"encoder.block.23.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"encoder.block.23.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"encoder.block.23.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"encoder.block.23.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"encoder.block.23.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"encoder.block.23.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"encoder.block.23.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"encoder.block.3.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"encoder.block.3.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"encoder.block.3.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"encoder.block.3.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"encoder.block.3.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"encoder.block.3.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"encoder.block.3.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"encoder.block.4.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"encoder.block.4.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"encoder.block.4.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"encoder.block.4.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"encoder.block.4.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"encoder.block.4.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"encoder.block.4.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"encoder.block.5.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"encoder.block.5.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"encoder.block.5.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"encoder.block.5.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"encoder.block.5.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"encoder.block.5.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"encoder.block.5.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"encoder.block.6.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"encoder.block.6.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"encoder.block.6.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"encoder.block.6.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"encoder.block.6.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"encoder.block.6.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"encoder.block.6.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"encoder.block.7.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"encoder.block.7.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"encoder.block.7.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"encoder.block.7.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"encoder.block.7.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"encoder.block.7.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"encoder.block.7.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"encoder.block.8.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"encoder.block.8.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"encoder.block.8.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"encoder.block.8.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"encoder.block.8.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"encoder.block.8.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"encoder.block.8.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"encoder.block.9.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"encoder.block.9.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"encoder.block.9.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"encoder.block.9.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"encoder.block.9.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"encoder.block.9.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"encoder.block.9.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"encoder.final_layer_norm.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"shared.weight": "model-00001-of-00002.safetensors"
|
225 |
+
}
|
226 |
+
}
|
tokenizer/added_tokens.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<extra_id_0>": 32099,
|
3 |
+
"<extra_id_10>": 32089,
|
4 |
+
"<extra_id_11>": 32088,
|
5 |
+
"<extra_id_12>": 32087,
|
6 |
+
"<extra_id_13>": 32086,
|
7 |
+
"<extra_id_14>": 32085,
|
8 |
+
"<extra_id_15>": 32084,
|
9 |
+
"<extra_id_16>": 32083,
|
10 |
+
"<extra_id_17>": 32082,
|
11 |
+
"<extra_id_18>": 32081,
|
12 |
+
"<extra_id_19>": 32080,
|
13 |
+
"<extra_id_1>": 32098,
|
14 |
+
"<extra_id_20>": 32079,
|
15 |
+
"<extra_id_21>": 32078,
|
16 |
+
"<extra_id_22>": 32077,
|
17 |
+
"<extra_id_23>": 32076,
|
18 |
+
"<extra_id_24>": 32075,
|
19 |
+
"<extra_id_25>": 32074,
|
20 |
+
"<extra_id_26>": 32073,
|
21 |
+
"<extra_id_27>": 32072,
|
22 |
+
"<extra_id_28>": 32071,
|
23 |
+
"<extra_id_29>": 32070,
|
24 |
+
"<extra_id_2>": 32097,
|
25 |
+
"<extra_id_30>": 32069,
|
26 |
+
"<extra_id_31>": 32068,
|
27 |
+
"<extra_id_32>": 32067,
|
28 |
+
"<extra_id_33>": 32066,
|
29 |
+
"<extra_id_34>": 32065,
|
30 |
+
"<extra_id_35>": 32064,
|
31 |
+
"<extra_id_36>": 32063,
|
32 |
+
"<extra_id_37>": 32062,
|
33 |
+
"<extra_id_38>": 32061,
|
34 |
+
"<extra_id_39>": 32060,
|
35 |
+
"<extra_id_3>": 32096,
|
36 |
+
"<extra_id_40>": 32059,
|
37 |
+
"<extra_id_41>": 32058,
|
38 |
+
"<extra_id_42>": 32057,
|
39 |
+
"<extra_id_43>": 32056,
|
40 |
+
"<extra_id_44>": 32055,
|
41 |
+
"<extra_id_45>": 32054,
|
42 |
+
"<extra_id_46>": 32053,
|
43 |
+
"<extra_id_47>": 32052,
|
44 |
+
"<extra_id_48>": 32051,
|
45 |
+
"<extra_id_49>": 32050,
|
46 |
+
"<extra_id_4>": 32095,
|
47 |
+
"<extra_id_50>": 32049,
|
48 |
+
"<extra_id_51>": 32048,
|
49 |
+
"<extra_id_52>": 32047,
|
50 |
+
"<extra_id_53>": 32046,
|
51 |
+
"<extra_id_54>": 32045,
|
52 |
+
"<extra_id_55>": 32044,
|
53 |
+
"<extra_id_56>": 32043,
|
54 |
+
"<extra_id_57>": 32042,
|
55 |
+
"<extra_id_58>": 32041,
|
56 |
+
"<extra_id_59>": 32040,
|
57 |
+
"<extra_id_5>": 32094,
|
58 |
+
"<extra_id_60>": 32039,
|
59 |
+
"<extra_id_61>": 32038,
|
60 |
+
"<extra_id_62>": 32037,
|
61 |
+
"<extra_id_63>": 32036,
|
62 |
+
"<extra_id_64>": 32035,
|
63 |
+
"<extra_id_65>": 32034,
|
64 |
+
"<extra_id_66>": 32033,
|
65 |
+
"<extra_id_67>": 32032,
|
66 |
+
"<extra_id_68>": 32031,
|
67 |
+
"<extra_id_69>": 32030,
|
68 |
+
"<extra_id_6>": 32093,
|
69 |
+
"<extra_id_70>": 32029,
|
70 |
+
"<extra_id_71>": 32028,
|
71 |
+
"<extra_id_72>": 32027,
|
72 |
+
"<extra_id_73>": 32026,
|
73 |
+
"<extra_id_74>": 32025,
|
74 |
+
"<extra_id_75>": 32024,
|
75 |
+
"<extra_id_76>": 32023,
|
76 |
+
"<extra_id_77>": 32022,
|
77 |
+
"<extra_id_78>": 32021,
|
78 |
+
"<extra_id_79>": 32020,
|
79 |
+
"<extra_id_7>": 32092,
|
80 |
+
"<extra_id_80>": 32019,
|
81 |
+
"<extra_id_81>": 32018,
|
82 |
+
"<extra_id_82>": 32017,
|
83 |
+
"<extra_id_83>": 32016,
|
84 |
+
"<extra_id_84>": 32015,
|
85 |
+
"<extra_id_85>": 32014,
|
86 |
+
"<extra_id_86>": 32013,
|
87 |
+
"<extra_id_87>": 32012,
|
88 |
+
"<extra_id_88>": 32011,
|
89 |
+
"<extra_id_89>": 32010,
|
90 |
+
"<extra_id_8>": 32091,
|
91 |
+
"<extra_id_90>": 32009,
|
92 |
+
"<extra_id_91>": 32008,
|
93 |
+
"<extra_id_92>": 32007,
|
94 |
+
"<extra_id_93>": 32006,
|
95 |
+
"<extra_id_94>": 32005,
|
96 |
+
"<extra_id_95>": 32004,
|
97 |
+
"<extra_id_96>": 32003,
|
98 |
+
"<extra_id_97>": 32002,
|
99 |
+
"<extra_id_98>": 32001,
|
100 |
+
"<extra_id_99>": 32000,
|
101 |
+
"<extra_id_9>": 32090
|
102 |
+
}
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": {
|
105 |
+
"content": "</s>",
|
106 |
+
"lstrip": false,
|
107 |
+
"normalized": false,
|
108 |
+
"rstrip": false,
|
109 |
+
"single_word": false
|
110 |
+
},
|
111 |
+
"pad_token": {
|
112 |
+
"content": "<pad>",
|
113 |
+
"lstrip": false,
|
114 |
+
"normalized": false,
|
115 |
+
"rstrip": false,
|
116 |
+
"single_word": false
|
117 |
+
},
|
118 |
+
"unk_token": {
|
119 |
+
"content": "<unk>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false
|
124 |
+
}
|
125 |
+
}
|
tokenizer/spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<pad>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "</s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<unk>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"32000": {
|
29 |
+
"content": "<extra_id_99>",
|
30 |
+
"lstrip": true,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": true,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"32001": {
|
37 |
+
"content": "<extra_id_98>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": true,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"32002": {
|
45 |
+
"content": "<extra_id_97>",
|
46 |
+
"lstrip": true,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": true,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"32003": {
|
53 |
+
"content": "<extra_id_96>",
|
54 |
+
"lstrip": true,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": true,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"32004": {
|
61 |
+
"content": "<extra_id_95>",
|
62 |
+
"lstrip": true,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": true,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"32005": {
|
69 |
+
"content": "<extra_id_94>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": true,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"32006": {
|
77 |
+
"content": "<extra_id_93>",
|
78 |
+
"lstrip": true,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": true,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"32007": {
|
85 |
+
"content": "<extra_id_92>",
|
86 |
+
"lstrip": true,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": true,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"32008": {
|
93 |
+
"content": "<extra_id_91>",
|
94 |
+
"lstrip": true,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": true,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"32009": {
|
101 |
+
"content": "<extra_id_90>",
|
102 |
+
"lstrip": true,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": true,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"32010": {
|
109 |
+
"content": "<extra_id_89>",
|
110 |
+
"lstrip": true,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": true,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"32011": {
|
117 |
+
"content": "<extra_id_88>",
|
118 |
+
"lstrip": true,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": true,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"32012": {
|
125 |
+
"content": "<extra_id_87>",
|
126 |
+
"lstrip": true,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": true,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"32013": {
|
133 |
+
"content": "<extra_id_86>",
|
134 |
+
"lstrip": true,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": true,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"32014": {
|
141 |
+
"content": "<extra_id_85>",
|
142 |
+
"lstrip": true,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": true,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"32015": {
|
149 |
+
"content": "<extra_id_84>",
|
150 |
+
"lstrip": true,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": true,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"32016": {
|
157 |
+
"content": "<extra_id_83>",
|
158 |
+
"lstrip": true,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": true,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"32017": {
|
165 |
+
"content": "<extra_id_82>",
|
166 |
+
"lstrip": true,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": true,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"32018": {
|
173 |
+
"content": "<extra_id_81>",
|
174 |
+
"lstrip": true,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": true,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"32019": {
|
181 |
+
"content": "<extra_id_80>",
|
182 |
+
"lstrip": true,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": true,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"32020": {
|
189 |
+
"content": "<extra_id_79>",
|
190 |
+
"lstrip": true,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": true,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"32021": {
|
197 |
+
"content": "<extra_id_78>",
|
198 |
+
"lstrip": true,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": true,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"32022": {
|
205 |
+
"content": "<extra_id_77>",
|
206 |
+
"lstrip": true,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": true,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"32023": {
|
213 |
+
"content": "<extra_id_76>",
|
214 |
+
"lstrip": true,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": true,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"32024": {
|
221 |
+
"content": "<extra_id_75>",
|
222 |
+
"lstrip": true,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": true,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"32025": {
|
229 |
+
"content": "<extra_id_74>",
|
230 |
+
"lstrip": true,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": true,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"32026": {
|
237 |
+
"content": "<extra_id_73>",
|
238 |
+
"lstrip": true,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": true,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"32027": {
|
245 |
+
"content": "<extra_id_72>",
|
246 |
+
"lstrip": true,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": true,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"32028": {
|
253 |
+
"content": "<extra_id_71>",
|
254 |
+
"lstrip": true,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": true,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"32029": {
|
261 |
+
"content": "<extra_id_70>",
|
262 |
+
"lstrip": true,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": true,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
},
|
268 |
+
"32030": {
|
269 |
+
"content": "<extra_id_69>",
|
270 |
+
"lstrip": true,
|
271 |
+
"normalized": false,
|
272 |
+
"rstrip": true,
|
273 |
+
"single_word": false,
|
274 |
+
"special": true
|
275 |
+
},
|
276 |
+
"32031": {
|
277 |
+
"content": "<extra_id_68>",
|
278 |
+
"lstrip": true,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": true,
|
281 |
+
"single_word": false,
|
282 |
+
"special": true
|
283 |
+
},
|
284 |
+
"32032": {
|
285 |
+
"content": "<extra_id_67>",
|
286 |
+
"lstrip": true,
|
287 |
+
"normalized": false,
|
288 |
+
"rstrip": true,
|
289 |
+
"single_word": false,
|
290 |
+
"special": true
|
291 |
+
},
|
292 |
+
"32033": {
|
293 |
+
"content": "<extra_id_66>",
|
294 |
+
"lstrip": true,
|
295 |
+
"normalized": false,
|
296 |
+
"rstrip": true,
|
297 |
+
"single_word": false,
|
298 |
+
"special": true
|
299 |
+
},
|
300 |
+
"32034": {
|
301 |
+
"content": "<extra_id_65>",
|
302 |
+
"lstrip": true,
|
303 |
+
"normalized": false,
|
304 |
+
"rstrip": true,
|
305 |
+
"single_word": false,
|
306 |
+
"special": true
|
307 |
+
},
|
308 |
+
"32035": {
|
309 |
+
"content": "<extra_id_64>",
|
310 |
+
"lstrip": true,
|
311 |
+
"normalized": false,
|
312 |
+
"rstrip": true,
|
313 |
+
"single_word": false,
|
314 |
+
"special": true
|
315 |
+
},
|
316 |
+
"32036": {
|
317 |
+
"content": "<extra_id_63>",
|
318 |
+
"lstrip": true,
|
319 |
+
"normalized": false,
|
320 |
+
"rstrip": true,
|
321 |
+
"single_word": false,
|
322 |
+
"special": true
|
323 |
+
},
|
324 |
+
"32037": {
|
325 |
+
"content": "<extra_id_62>",
|
326 |
+
"lstrip": true,
|
327 |
+
"normalized": false,
|
328 |
+
"rstrip": true,
|
329 |
+
"single_word": false,
|
330 |
+
"special": true
|
331 |
+
},
|
332 |
+
"32038": {
|
333 |
+
"content": "<extra_id_61>",
|
334 |
+
"lstrip": true,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": true,
|
337 |
+
"single_word": false,
|
338 |
+
"special": true
|
339 |
+
},
|
340 |
+
"32039": {
|
341 |
+
"content": "<extra_id_60>",
|
342 |
+
"lstrip": true,
|
343 |
+
"normalized": false,
|
344 |
+
"rstrip": true,
|
345 |
+
"single_word": false,
|
346 |
+
"special": true
|
347 |
+
},
|
348 |
+
"32040": {
|
349 |
+
"content": "<extra_id_59>",
|
350 |
+
"lstrip": true,
|
351 |
+
"normalized": false,
|
352 |
+
"rstrip": true,
|
353 |
+
"single_word": false,
|
354 |
+
"special": true
|
355 |
+
},
|
356 |
+
"32041": {
|
357 |
+
"content": "<extra_id_58>",
|
358 |
+
"lstrip": true,
|
359 |
+
"normalized": false,
|
360 |
+
"rstrip": true,
|
361 |
+
"single_word": false,
|
362 |
+
"special": true
|
363 |
+
},
|
364 |
+
"32042": {
|
365 |
+
"content": "<extra_id_57>",
|
366 |
+
"lstrip": true,
|
367 |
+
"normalized": false,
|
368 |
+
"rstrip": true,
|
369 |
+
"single_word": false,
|
370 |
+
"special": true
|
371 |
+
},
|
372 |
+
"32043": {
|
373 |
+
"content": "<extra_id_56>",
|
374 |
+
"lstrip": true,
|
375 |
+
"normalized": false,
|
376 |
+
"rstrip": true,
|
377 |
+
"single_word": false,
|
378 |
+
"special": true
|
379 |
+
},
|
380 |
+
"32044": {
|
381 |
+
"content": "<extra_id_55>",
|
382 |
+
"lstrip": true,
|
383 |
+
"normalized": false,
|
384 |
+
"rstrip": true,
|
385 |
+
"single_word": false,
|
386 |
+
"special": true
|
387 |
+
},
|
388 |
+
"32045": {
|
389 |
+
"content": "<extra_id_54>",
|
390 |
+
"lstrip": true,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": true,
|
393 |
+
"single_word": false,
|
394 |
+
"special": true
|
395 |
+
},
|
396 |
+
"32046": {
|
397 |
+
"content": "<extra_id_53>",
|
398 |
+
"lstrip": true,
|
399 |
+
"normalized": false,
|
400 |
+
"rstrip": true,
|
401 |
+
"single_word": false,
|
402 |
+
"special": true
|
403 |
+
},
|
404 |
+
"32047": {
|
405 |
+
"content": "<extra_id_52>",
|
406 |
+
"lstrip": true,
|
407 |
+
"normalized": false,
|
408 |
+
"rstrip": true,
|
409 |
+
"single_word": false,
|
410 |
+
"special": true
|
411 |
+
},
|
412 |
+
"32048": {
|
413 |
+
"content": "<extra_id_51>",
|
414 |
+
"lstrip": true,
|
415 |
+
"normalized": false,
|
416 |
+
"rstrip": true,
|
417 |
+
"single_word": false,
|
418 |
+
"special": true
|
419 |
+
},
|
420 |
+
"32049": {
|
421 |
+
"content": "<extra_id_50>",
|
422 |
+
"lstrip": true,
|
423 |
+
"normalized": false,
|
424 |
+
"rstrip": true,
|
425 |
+
"single_word": false,
|
426 |
+
"special": true
|
427 |
+
},
|
428 |
+
"32050": {
|
429 |
+
"content": "<extra_id_49>",
|
430 |
+
"lstrip": true,
|
431 |
+
"normalized": false,
|
432 |
+
"rstrip": true,
|
433 |
+
"single_word": false,
|
434 |
+
"special": true
|
435 |
+
},
|
436 |
+
"32051": {
|
437 |
+
"content": "<extra_id_48>",
|
438 |
+
"lstrip": true,
|
439 |
+
"normalized": false,
|
440 |
+
"rstrip": true,
|
441 |
+
"single_word": false,
|
442 |
+
"special": true
|
443 |
+
},
|
444 |
+
"32052": {
|
445 |
+
"content": "<extra_id_47>",
|
446 |
+
"lstrip": true,
|
447 |
+
"normalized": false,
|
448 |
+
"rstrip": true,
|
449 |
+
"single_word": false,
|
450 |
+
"special": true
|
451 |
+
},
|
452 |
+
"32053": {
|
453 |
+
"content": "<extra_id_46>",
|
454 |
+
"lstrip": true,
|
455 |
+
"normalized": false,
|
456 |
+
"rstrip": true,
|
457 |
+
"single_word": false,
|
458 |
+
"special": true
|
459 |
+
},
|
460 |
+
"32054": {
|
461 |
+
"content": "<extra_id_45>",
|
462 |
+
"lstrip": true,
|
463 |
+
"normalized": false,
|
464 |
+
"rstrip": true,
|
465 |
+
"single_word": false,
|
466 |
+
"special": true
|
467 |
+
},
|
468 |
+
"32055": {
|
469 |
+
"content": "<extra_id_44>",
|
470 |
+
"lstrip": true,
|
471 |
+
"normalized": false,
|
472 |
+
"rstrip": true,
|
473 |
+
"single_word": false,
|
474 |
+
"special": true
|
475 |
+
},
|
476 |
+
"32056": {
|
477 |
+
"content": "<extra_id_43>",
|
478 |
+
"lstrip": true,
|
479 |
+
"normalized": false,
|
480 |
+
"rstrip": true,
|
481 |
+
"single_word": false,
|
482 |
+
"special": true
|
483 |
+
},
|
484 |
+
"32057": {
|
485 |
+
"content": "<extra_id_42>",
|
486 |
+
"lstrip": true,
|
487 |
+
"normalized": false,
|
488 |
+
"rstrip": true,
|
489 |
+
"single_word": false,
|
490 |
+
"special": true
|
491 |
+
},
|
492 |
+
"32058": {
|
493 |
+
"content": "<extra_id_41>",
|
494 |
+
"lstrip": true,
|
495 |
+
"normalized": false,
|
496 |
+
"rstrip": true,
|
497 |
+
"single_word": false,
|
498 |
+
"special": true
|
499 |
+
},
|
500 |
+
"32059": {
|
501 |
+
"content": "<extra_id_40>",
|
502 |
+
"lstrip": true,
|
503 |
+
"normalized": false,
|
504 |
+
"rstrip": true,
|
505 |
+
"single_word": false,
|
506 |
+
"special": true
|
507 |
+
},
|
508 |
+
"32060": {
|
509 |
+
"content": "<extra_id_39>",
|
510 |
+
"lstrip": true,
|
511 |
+
"normalized": false,
|
512 |
+
"rstrip": true,
|
513 |
+
"single_word": false,
|
514 |
+
"special": true
|
515 |
+
},
|
516 |
+
"32061": {
|
517 |
+
"content": "<extra_id_38>",
|
518 |
+
"lstrip": true,
|
519 |
+
"normalized": false,
|
520 |
+
"rstrip": true,
|
521 |
+
"single_word": false,
|
522 |
+
"special": true
|
523 |
+
},
|
524 |
+
"32062": {
|
525 |
+
"content": "<extra_id_37>",
|
526 |
+
"lstrip": true,
|
527 |
+
"normalized": false,
|
528 |
+
"rstrip": true,
|
529 |
+
"single_word": false,
|
530 |
+
"special": true
|
531 |
+
},
|
532 |
+
"32063": {
|
533 |
+
"content": "<extra_id_36>",
|
534 |
+
"lstrip": true,
|
535 |
+
"normalized": false,
|
536 |
+
"rstrip": true,
|
537 |
+
"single_word": false,
|
538 |
+
"special": true
|
539 |
+
},
|
540 |
+
"32064": {
|
541 |
+
"content": "<extra_id_35>",
|
542 |
+
"lstrip": true,
|
543 |
+
"normalized": false,
|
544 |
+
"rstrip": true,
|
545 |
+
"single_word": false,
|
546 |
+
"special": true
|
547 |
+
},
|
548 |
+
"32065": {
|
549 |
+
"content": "<extra_id_34>",
|
550 |
+
"lstrip": true,
|
551 |
+
"normalized": false,
|
552 |
+
"rstrip": true,
|
553 |
+
"single_word": false,
|
554 |
+
"special": true
|
555 |
+
},
|
556 |
+
"32066": {
|
557 |
+
"content": "<extra_id_33>",
|
558 |
+
"lstrip": true,
|
559 |
+
"normalized": false,
|
560 |
+
"rstrip": true,
|
561 |
+
"single_word": false,
|
562 |
+
"special": true
|
563 |
+
},
|
564 |
+
"32067": {
|
565 |
+
"content": "<extra_id_32>",
|
566 |
+
"lstrip": true,
|
567 |
+
"normalized": false,
|
568 |
+
"rstrip": true,
|
569 |
+
"single_word": false,
|
570 |
+
"special": true
|
571 |
+
},
|
572 |
+
"32068": {
|
573 |
+
"content": "<extra_id_31>",
|
574 |
+
"lstrip": true,
|
575 |
+
"normalized": false,
|
576 |
+
"rstrip": true,
|
577 |
+
"single_word": false,
|
578 |
+
"special": true
|
579 |
+
},
|
580 |
+
"32069": {
|
581 |
+
"content": "<extra_id_30>",
|
582 |
+
"lstrip": true,
|
583 |
+
"normalized": false,
|
584 |
+
"rstrip": true,
|
585 |
+
"single_word": false,
|
586 |
+
"special": true
|
587 |
+
},
|
588 |
+
"32070": {
|
589 |
+
"content": "<extra_id_29>",
|
590 |
+
"lstrip": true,
|
591 |
+
"normalized": false,
|
592 |
+
"rstrip": true,
|
593 |
+
"single_word": false,
|
594 |
+
"special": true
|
595 |
+
},
|
596 |
+
"32071": {
|
597 |
+
"content": "<extra_id_28>",
|
598 |
+
"lstrip": true,
|
599 |
+
"normalized": false,
|
600 |
+
"rstrip": true,
|
601 |
+
"single_word": false,
|
602 |
+
"special": true
|
603 |
+
},
|
604 |
+
"32072": {
|
605 |
+
"content": "<extra_id_27>",
|
606 |
+
"lstrip": true,
|
607 |
+
"normalized": false,
|
608 |
+
"rstrip": true,
|
609 |
+
"single_word": false,
|
610 |
+
"special": true
|
611 |
+
},
|
612 |
+
"32073": {
|
613 |
+
"content": "<extra_id_26>",
|
614 |
+
"lstrip": true,
|
615 |
+
"normalized": false,
|
616 |
+
"rstrip": true,
|
617 |
+
"single_word": false,
|
618 |
+
"special": true
|
619 |
+
},
|
620 |
+
"32074": {
|
621 |
+
"content": "<extra_id_25>",
|
622 |
+
"lstrip": true,
|
623 |
+
"normalized": false,
|
624 |
+
"rstrip": true,
|
625 |
+
"single_word": false,
|
626 |
+
"special": true
|
627 |
+
},
|
628 |
+
"32075": {
|
629 |
+
"content": "<extra_id_24>",
|
630 |
+
"lstrip": true,
|
631 |
+
"normalized": false,
|
632 |
+
"rstrip": true,
|
633 |
+
"single_word": false,
|
634 |
+
"special": true
|
635 |
+
},
|
636 |
+
"32076": {
|
637 |
+
"content": "<extra_id_23>",
|
638 |
+
"lstrip": true,
|
639 |
+
"normalized": false,
|
640 |
+
"rstrip": true,
|
641 |
+
"single_word": false,
|
642 |
+
"special": true
|
643 |
+
},
|
644 |
+
"32077": {
|
645 |
+
"content": "<extra_id_22>",
|
646 |
+
"lstrip": true,
|
647 |
+
"normalized": false,
|
648 |
+
"rstrip": true,
|
649 |
+
"single_word": false,
|
650 |
+
"special": true
|
651 |
+
},
|
652 |
+
"32078": {
|
653 |
+
"content": "<extra_id_21>",
|
654 |
+
"lstrip": true,
|
655 |
+
"normalized": false,
|
656 |
+
"rstrip": true,
|
657 |
+
"single_word": false,
|
658 |
+
"special": true
|
659 |
+
},
|
660 |
+
"32079": {
|
661 |
+
"content": "<extra_id_20>",
|
662 |
+
"lstrip": true,
|
663 |
+
"normalized": false,
|
664 |
+
"rstrip": true,
|
665 |
+
"single_word": false,
|
666 |
+
"special": true
|
667 |
+
},
|
668 |
+
"32080": {
|
669 |
+
"content": "<extra_id_19>",
|
670 |
+
"lstrip": true,
|
671 |
+
"normalized": false,
|
672 |
+
"rstrip": true,
|
673 |
+
"single_word": false,
|
674 |
+
"special": true
|
675 |
+
},
|
676 |
+
"32081": {
|
677 |
+
"content": "<extra_id_18>",
|
678 |
+
"lstrip": true,
|
679 |
+
"normalized": false,
|
680 |
+
"rstrip": true,
|
681 |
+
"single_word": false,
|
682 |
+
"special": true
|
683 |
+
},
|
684 |
+
"32082": {
|
685 |
+
"content": "<extra_id_17>",
|
686 |
+
"lstrip": true,
|
687 |
+
"normalized": false,
|
688 |
+
"rstrip": true,
|
689 |
+
"single_word": false,
|
690 |
+
"special": true
|
691 |
+
},
|
692 |
+
"32083": {
|
693 |
+
"content": "<extra_id_16>",
|
694 |
+
"lstrip": true,
|
695 |
+
"normalized": false,
|
696 |
+
"rstrip": true,
|
697 |
+
"single_word": false,
|
698 |
+
"special": true
|
699 |
+
},
|
700 |
+
"32084": {
|
701 |
+
"content": "<extra_id_15>",
|
702 |
+
"lstrip": true,
|
703 |
+
"normalized": false,
|
704 |
+
"rstrip": true,
|
705 |
+
"single_word": false,
|
706 |
+
"special": true
|
707 |
+
},
|
708 |
+
"32085": {
|
709 |
+
"content": "<extra_id_14>",
|
710 |
+
"lstrip": true,
|
711 |
+
"normalized": false,
|
712 |
+
"rstrip": true,
|
713 |
+
"single_word": false,
|
714 |
+
"special": true
|
715 |
+
},
|
716 |
+
"32086": {
|
717 |
+
"content": "<extra_id_13>",
|
718 |
+
"lstrip": true,
|
719 |
+
"normalized": false,
|
720 |
+
"rstrip": true,
|
721 |
+
"single_word": false,
|
722 |
+
"special": true
|
723 |
+
},
|
724 |
+
"32087": {
|
725 |
+
"content": "<extra_id_12>",
|
726 |
+
"lstrip": true,
|
727 |
+
"normalized": false,
|
728 |
+
"rstrip": true,
|
729 |
+
"single_word": false,
|
730 |
+
"special": true
|
731 |
+
},
|
732 |
+
"32088": {
|
733 |
+
"content": "<extra_id_11>",
|
734 |
+
"lstrip": true,
|
735 |
+
"normalized": false,
|
736 |
+
"rstrip": true,
|
737 |
+
"single_word": false,
|
738 |
+
"special": true
|
739 |
+
},
|
740 |
+
"32089": {
|
741 |
+
"content": "<extra_id_10>",
|
742 |
+
"lstrip": true,
|
743 |
+
"normalized": false,
|
744 |
+
"rstrip": true,
|
745 |
+
"single_word": false,
|
746 |
+
"special": true
|
747 |
+
},
|
748 |
+
"32090": {
|
749 |
+
"content": "<extra_id_9>",
|
750 |
+
"lstrip": true,
|
751 |
+
"normalized": false,
|
752 |
+
"rstrip": true,
|
753 |
+
"single_word": false,
|
754 |
+
"special": true
|
755 |
+
},
|
756 |
+
"32091": {
|
757 |
+
"content": "<extra_id_8>",
|
758 |
+
"lstrip": true,
|
759 |
+
"normalized": false,
|
760 |
+
"rstrip": true,
|
761 |
+
"single_word": false,
|
762 |
+
"special": true
|
763 |
+
},
|
764 |
+
"32092": {
|
765 |
+
"content": "<extra_id_7>",
|
766 |
+
"lstrip": true,
|
767 |
+
"normalized": false,
|
768 |
+
"rstrip": true,
|
769 |
+
"single_word": false,
|
770 |
+
"special": true
|
771 |
+
},
|
772 |
+
"32093": {
|
773 |
+
"content": "<extra_id_6>",
|
774 |
+
"lstrip": true,
|
775 |
+
"normalized": false,
|
776 |
+
"rstrip": true,
|
777 |
+
"single_word": false,
|
778 |
+
"special": true
|
779 |
+
},
|
780 |
+
"32094": {
|
781 |
+
"content": "<extra_id_5>",
|
782 |
+
"lstrip": true,
|
783 |
+
"normalized": false,
|
784 |
+
"rstrip": true,
|
785 |
+
"single_word": false,
|
786 |
+
"special": true
|
787 |
+
},
|
788 |
+
"32095": {
|
789 |
+
"content": "<extra_id_4>",
|
790 |
+
"lstrip": true,
|
791 |
+
"normalized": false,
|
792 |
+
"rstrip": true,
|
793 |
+
"single_word": false,
|
794 |
+
"special": true
|
795 |
+
},
|
796 |
+
"32096": {
|
797 |
+
"content": "<extra_id_3>",
|
798 |
+
"lstrip": true,
|
799 |
+
"normalized": false,
|
800 |
+
"rstrip": true,
|
801 |
+
"single_word": false,
|
802 |
+
"special": true
|
803 |
+
},
|
804 |
+
"32097": {
|
805 |
+
"content": "<extra_id_2>",
|
806 |
+
"lstrip": true,
|
807 |
+
"normalized": false,
|
808 |
+
"rstrip": true,
|
809 |
+
"single_word": false,
|
810 |
+
"special": true
|
811 |
+
},
|
812 |
+
"32098": {
|
813 |
+
"content": "<extra_id_1>",
|
814 |
+
"lstrip": true,
|
815 |
+
"normalized": false,
|
816 |
+
"rstrip": true,
|
817 |
+
"single_word": false,
|
818 |
+
"special": true
|
819 |
+
},
|
820 |
+
"32099": {
|
821 |
+
"content": "<extra_id_0>",
|
822 |
+
"lstrip": true,
|
823 |
+
"normalized": false,
|
824 |
+
"rstrip": true,
|
825 |
+
"single_word": false,
|
826 |
+
"special": true
|
827 |
+
}
|
828 |
+
},
|
829 |
+
"additional_special_tokens": [
|
830 |
+
"<extra_id_0>",
|
831 |
+
"<extra_id_1>",
|
832 |
+
"<extra_id_2>",
|
833 |
+
"<extra_id_3>",
|
834 |
+
"<extra_id_4>",
|
835 |
+
"<extra_id_5>",
|
836 |
+
"<extra_id_6>",
|
837 |
+
"<extra_id_7>",
|
838 |
+
"<extra_id_8>",
|
839 |
+
"<extra_id_9>",
|
840 |
+
"<extra_id_10>",
|
841 |
+
"<extra_id_11>",
|
842 |
+
"<extra_id_12>",
|
843 |
+
"<extra_id_13>",
|
844 |
+
"<extra_id_14>",
|
845 |
+
"<extra_id_15>",
|
846 |
+
"<extra_id_16>",
|
847 |
+
"<extra_id_17>",
|
848 |
+
"<extra_id_18>",
|
849 |
+
"<extra_id_19>",
|
850 |
+
"<extra_id_20>",
|
851 |
+
"<extra_id_21>",
|
852 |
+
"<extra_id_22>",
|
853 |
+
"<extra_id_23>",
|
854 |
+
"<extra_id_24>",
|
855 |
+
"<extra_id_25>",
|
856 |
+
"<extra_id_26>",
|
857 |
+
"<extra_id_27>",
|
858 |
+
"<extra_id_28>",
|
859 |
+
"<extra_id_29>",
|
860 |
+
"<extra_id_30>",
|
861 |
+
"<extra_id_31>",
|
862 |
+
"<extra_id_32>",
|
863 |
+
"<extra_id_33>",
|
864 |
+
"<extra_id_34>",
|
865 |
+
"<extra_id_35>",
|
866 |
+
"<extra_id_36>",
|
867 |
+
"<extra_id_37>",
|
868 |
+
"<extra_id_38>",
|
869 |
+
"<extra_id_39>",
|
870 |
+
"<extra_id_40>",
|
871 |
+
"<extra_id_41>",
|
872 |
+
"<extra_id_42>",
|
873 |
+
"<extra_id_43>",
|
874 |
+
"<extra_id_44>",
|
875 |
+
"<extra_id_45>",
|
876 |
+
"<extra_id_46>",
|
877 |
+
"<extra_id_47>",
|
878 |
+
"<extra_id_48>",
|
879 |
+
"<extra_id_49>",
|
880 |
+
"<extra_id_50>",
|
881 |
+
"<extra_id_51>",
|
882 |
+
"<extra_id_52>",
|
883 |
+
"<extra_id_53>",
|
884 |
+
"<extra_id_54>",
|
885 |
+
"<extra_id_55>",
|
886 |
+
"<extra_id_56>",
|
887 |
+
"<extra_id_57>",
|
888 |
+
"<extra_id_58>",
|
889 |
+
"<extra_id_59>",
|
890 |
+
"<extra_id_60>",
|
891 |
+
"<extra_id_61>",
|
892 |
+
"<extra_id_62>",
|
893 |
+
"<extra_id_63>",
|
894 |
+
"<extra_id_64>",
|
895 |
+
"<extra_id_65>",
|
896 |
+
"<extra_id_66>",
|
897 |
+
"<extra_id_67>",
|
898 |
+
"<extra_id_68>",
|
899 |
+
"<extra_id_69>",
|
900 |
+
"<extra_id_70>",
|
901 |
+
"<extra_id_71>",
|
902 |
+
"<extra_id_72>",
|
903 |
+
"<extra_id_73>",
|
904 |
+
"<extra_id_74>",
|
905 |
+
"<extra_id_75>",
|
906 |
+
"<extra_id_76>",
|
907 |
+
"<extra_id_77>",
|
908 |
+
"<extra_id_78>",
|
909 |
+
"<extra_id_79>",
|
910 |
+
"<extra_id_80>",
|
911 |
+
"<extra_id_81>",
|
912 |
+
"<extra_id_82>",
|
913 |
+
"<extra_id_83>",
|
914 |
+
"<extra_id_84>",
|
915 |
+
"<extra_id_85>",
|
916 |
+
"<extra_id_86>",
|
917 |
+
"<extra_id_87>",
|
918 |
+
"<extra_id_88>",
|
919 |
+
"<extra_id_89>",
|
920 |
+
"<extra_id_90>",
|
921 |
+
"<extra_id_91>",
|
922 |
+
"<extra_id_92>",
|
923 |
+
"<extra_id_93>",
|
924 |
+
"<extra_id_94>",
|
925 |
+
"<extra_id_95>",
|
926 |
+
"<extra_id_96>",
|
927 |
+
"<extra_id_97>",
|
928 |
+
"<extra_id_98>",
|
929 |
+
"<extra_id_99>"
|
930 |
+
],
|
931 |
+
"clean_up_tokenization_spaces": true,
|
932 |
+
"eos_token": "</s>",
|
933 |
+
"extra_ids": 100,
|
934 |
+
"legacy": true,
|
935 |
+
"model_max_length": 226,
|
936 |
+
"pad_token": "<pad>",
|
937 |
+
"sp_model_kwargs": {},
|
938 |
+
"tokenizer_class": "T5Tokenizer",
|
939 |
+
"unk_token": "<unk>"
|
940 |
+
}
|
transformer/config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "CogVideoXTransformer3DModel",
|
3 |
+
"_diffusers_version": "0.30.0.dev0",
|
4 |
+
"activation_fn": "gelu-approximate",
|
5 |
+
"attention_bias": true,
|
6 |
+
"attention_head_dim": 64,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"flip_sin_to_cos": true,
|
9 |
+
"freq_shift": 0,
|
10 |
+
"in_channels": 16,
|
11 |
+
"max_text_seq_length": 226,
|
12 |
+
"norm_elementwise_affine": true,
|
13 |
+
"norm_eps": 1e-05,
|
14 |
+
"num_attention_heads": 30,
|
15 |
+
"num_layers": 30,
|
16 |
+
"out_channels": 16,
|
17 |
+
"patch_size": 2,
|
18 |
+
"sample_frames": 49,
|
19 |
+
"sample_height": 60,
|
20 |
+
"sample_width": 90,
|
21 |
+
"spatial_interpolation_scale": 1.875,
|
22 |
+
"temporal_compression_ratio": 4,
|
23 |
+
"temporal_interpolation_scale": 1.0,
|
24 |
+
"text_embed_dim": 4096,
|
25 |
+
"time_embed_dim": 512,
|
26 |
+
"timestep_activation_fn": "silu"
|
27 |
+
}
|
transformer/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fbb6a5e67c70885a8ed8e33df144ac61253e45977be5035fa18cfdf77d386c7
|
3 |
+
size 3387650264
|
vae/config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKLCogVideoX",
|
3 |
+
"_diffusers_version": "0.30.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
256,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"CogVideoXDownBlock3D",
|
13 |
+
"CogVideoXDownBlock3D",
|
14 |
+
"CogVideoXDownBlock3D",
|
15 |
+
"CogVideoXDownBlock3D"
|
16 |
+
],
|
17 |
+
"force_upcast": true,
|
18 |
+
"in_channels": 3,
|
19 |
+
"latent_channels": 16,
|
20 |
+
"latents_mean": null,
|
21 |
+
"latents_std": null,
|
22 |
+
"layers_per_block": 3,
|
23 |
+
"mid_block_add_attention": true,
|
24 |
+
"norm_eps": 1e-06,
|
25 |
+
"norm_num_groups": 32,
|
26 |
+
"out_channels": 3,
|
27 |
+
"sample_size": 256,
|
28 |
+
"scaling_factor": 1.15258426,
|
29 |
+
"shift_factor": null,
|
30 |
+
"temporal_compression_ratio": 4,
|
31 |
+
"up_block_types": [
|
32 |
+
"CogVideoXUpBlock3D",
|
33 |
+
"CogVideoXUpBlock3D",
|
34 |
+
"CogVideoXUpBlock3D",
|
35 |
+
"CogVideoXUpBlock3D"
|
36 |
+
],
|
37 |
+
"use_post_quant_conv": false,
|
38 |
+
"use_quant_conv": false
|
39 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e25e94a8fc70774349bb4a03b8ef272f5d80f934863f7b0552c37c6a74f91542
|
3 |
+
size 431220702
|