English
Protein_Language_Model
MSA Generation
File size: 17,259 Bytes
0dce0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import math
import copy
import torch
from torch.nn import functional as F
import torch.nn as nn
import contextlib

from sat import mpu
from sat.transformer_defaults import standard_attention, attention_fn_default
from sat.mpu.utils import split_tensor_along_last_dim, divide
from sat.mpu.layers import ColumnParallelLinear
from sat.model.base_model import BaseModel, BaseMixin
from sat.model.position_embedding import RotaryEmbedding
from sat.model.position_embedding import apply_rotary_pos_emb_index
from sat.ops import LayerNorm


class RotaryEmbeddingMixin(BaseMixin):
    def __init__(
        self,
        fp16,
        hidden_size,
        num_attention_heads,
        model_parallel_size,
        rotary_embedding_2d=True,
    ):
        super().__init__()
        hidden_size_per_attention_head = divide(hidden_size, num_attention_heads)
        self.hidden_size_per_attention_head = hidden_size_per_attention_head
        self.rotary_embedding_2d = rotary_embedding_2d
        self.num_attention_heads_per_partition = divide(num_attention_heads, model_parallel_size)
        self.rotary_emb = RotaryEmbedding(
            # hidden_size_per_attention_head,
            hidden_size_per_attention_head // 2
            if rotary_embedding_2d
            else hidden_size_per_attention_head,
            base=10000,
            precision=torch.half if fp16 else torch.bfloat16,
            learnable=False,
            device=torch.cuda.current_device(),
        )


    def attention_forward(self, hidden_states, mask, **kw_args):
        attn = self.transformer.layers[kw_args["layer_id"]].attention
        attention_fn = attention_fn_default
        if "attention_fn" in attn.hooks:
            attention_fn = attn.hooks["attention_fn"]

        # [seq, b, 3 * hn * np]
        mixed_raw_layer = attn.query_key_value(hidden_states)

        # [seq, b, (np * 3 * hn)] --> [seq, b, np, 3 * hn]
        new_tensor_shape = mixed_raw_layer.size()[:-1] + (
            self.num_attention_heads_per_partition,
            3 * self.hidden_size_per_attention_head,
        )
        mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)

        # [sq, b, np, hn]
        (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_raw_layer, 3)
        # print(key_layer.shape)
        dropout_fn = attn.attention_dropout if attn.training else None
        if self.rotary_embedding_2d:
            q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
            k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
            cos, sin = self.rotary_emb(q1, seq_len=kw_args["position_ids"].max() + 1)
            position_ids, block_position_ids = \
                kw_args["position_ids"][:, 0, :].transpose(0, 1).contiguous(), \
                kw_args["position_ids"][:, 1, :].transpose(0, 1).contiguous()
            q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
            q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
            query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
            key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
        else:
            kw_args["position_ids"] = kw_args["position_ids"].transpose(0, 1)
            cos, sin = self.rotary_emb(value_layer, seq_len=kw_args["position_ids"].max() + 1)
            query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, kw_args["position_ids"])

        context_layer = attention_fn(query_layer, key_layer, value_layer, mask, dropout_fn, **kw_args)
        output = attn.dense(context_layer)

        if attn.training:
            output = attn.output_dropout(output)

        return output


class GEGLU(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.activation_fn = F.gelu

    def forward(self, x):
        # dim=-1 breaks in jit for pt<1.10
        x1, x2 = x.chunk(2, dim=(x.ndim - 1))
        return x1 * self.activation_fn(x2)


class DeepNormWithGLUMixin(BaseMixin):
    def __init__(self, num_layers, hidden_size, inner_hidden_size=None):
        super().__init__()
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        if inner_hidden_size is None:
            inner_hidden_size = 4 * hidden_size * 2 // 3
        self.inner_hidden_size = inner_hidden_size

    def reinit(self):
        for layer in self.transformer.layers:
            del layer.mlp.dense_h_to_4h
            layer.mlp.dense_h_to_4h = ColumnParallelLinear(
                self.hidden_size,
                2 * self.inner_hidden_size,
                gather_output=False,
                bias=True,
                params_dtype=torch.half,
                module=self,
                name="dense_h_to_4h",
                skip_init=True,
            )
            del layer.mlp.activation_func
            layer.mlp.activation_func = GEGLU()

    def layer_forward(self, hidden_states, mask, *args, **kw_args):
        """
        hidden_states: [seq_len, batch, hidden_size]
        mask: [(1, 1), seq_len, seq_len]
        """
        layer = self.transformer.layers[kw_args["layer_id"]]
        # Layer norm at the begining of the transformer layer.

        attention_input = layer.input_layernorm(hidden_states)

        # Self attention.
        attention_output = layer.attention(attention_input, mask, **kw_args)

        # Residual connection.
        alpha = (2 * self.num_layers) ** 0.5
        hidden_states = attention_input * alpha + attention_output

        mlp_input = layer.post_attention_layernorm(hidden_states)

        # MLP.
        mlp_output = layer.mlp(mlp_input, **kw_args)

        # Second residual connection.
        output = mlp_input * alpha + mlp_output

        return output


class SelfAttentionWithFP32SoftmaxMixin(BaseMixin):
    def __init__(self, fp16, hidden_size, num_attention_heads, model_parallel_size):
        super().__init__()
        self.hidden_size_per_attention_head = divide(hidden_size, num_attention_heads)
        self.hidden_size_per_partition = divide(hidden_size, model_parallel_size)
        self.scale_mask_softmax = None
        self.fp16 = fp16

    @staticmethod
    def attention_mask_func(attention_scores, attention_mask):
        attention_scores.masked_fill_(attention_mask, -10000.0)
        return attention_scores

    def attention_fn(
        self,
        query_layer,
        key_layer,
        value_layer,
        attention_mask,
        attention_dropout=None,
        log_attention_weights=None,
        scaling_attention_score=True,
        mems=None,
        **kwargs
    ):

        mem = mems[kwargs["layer_id"]] if mems is not None else None

        # seqlen, batch, head, hidden_size
        seq_len, b, nh, hidden_size = key_layer.shape

        # stack, seqlen, b, head, hidden
        # b, seqlen, stack, head, hidden
        cache_kv = (
            torch.stack((key_layer, value_layer))
            .permute(2, 1, 0, 3, 4)
            .detach()
            .contiguous()
            .view(b, seq_len, nh * hidden_size * 2)
        )
        kwargs["output_this_layer"]["mem_kv"] = cache_kv

        if mem is not None:  # the first time, mem is None
            # might change batch_size
            # b, seqlen, stack, head, hidden -> stack, seqlen, b, head, hidden
            mem = mem.expand(b, -1, -1).reshape(b, mem.shape[1], 2, nh, hidden_size).permute(2, 1, 0, 3, 4)
            memk, memv = mem[0], mem[1]
            key_layer = torch.cat((memk, key_layer), dim=0)
            value_layer = torch.cat((memv, value_layer), dim=0)


        # check if use flash attention
        is_low_triangle = (attention_mask == ~torch.ones_like(attention_mask, dtype=torch.bool).tril()).all()
        is_full = (attention_mask is None) or (attention_mask == 0).all()
        if int(torch.__version__.split('.')[0]) >= 2 and (is_full or is_low_triangle):
            # Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
            dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
            #[b, np, sq, hn]
            query_layer, key_layer, value_layer = query_layer.permute(1,2,0,3).contiguous(), key_layer.permute(1,2,0,3).contiguous(), value_layer.permute(1,2,0,3).contiguous()
            batch_size, num_query_heads = query_layer.shape[:2] # [b, np, s, hn]
            num_kv_heads = key_layer.shape[1] # [b, np, s, hn]
            key_layer = key_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *key_layer.shape[2:])
            value_layer = value_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *value_layer.shape[2:])

            if dropout_p > 0 and mpu.get_cuda_rng_tracker is not None:
                context = mpu.get_cuda_rng_tracker().fork()
            else:
                context = contextlib.nullcontext()

            with context:
                context_layer = torch.nn.functional.scaled_dot_product_attention(
                    query_layer, key_layer, value_layer, 
                    attn_mask=None,
                    dropout_p=dropout_p,
                    is_causal=not is_full
                )


            #[sq, b, np, hn]
            context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

            # [sq, b, np, hn] --> [sq, b, hp]
            new_context_layer_shape = context_layer.size()[:-2] + (-1,)
            context_layer = context_layer.view(*new_context_layer_shape)
            return context_layer

        else:
            # standard attention
            # [b, np, sq, sk]
            output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))

            query_key_layer_scaling_coeff = float(kwargs["layer_id"] + 1)


            if scaling_attention_score:
                query_layer = query_layer / (math.sqrt(self.hidden_size_per_attention_head) * query_key_layer_scaling_coeff)
            # ===================================
            # Raw attention scores. [b, np, s, s]
            # ===================================
            # [sq, b, np, hn] -> [sq, b * np, hn]
            query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
            # [sk, b, np, hn] -> [sk, b * np, hn]
            key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)

            matmul_result = torch.empty(
                output_size[0] * output_size[1],
                output_size[2],
                output_size[3],
                dtype=query_layer.dtype,
                device=torch.cuda.current_device(),
            )

            matmul_result = torch.baddbmm(
                matmul_result,
                query_layer.transpose(0, 1),  # [b * np, sq, hn]
                key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
                beta=0.0,
                alpha=1.0,
            )

            # change view to [b, np, sq, sk]
            attention_scores = matmul_result.view(*output_size)
            
            if not (attention_mask.shape[-2] == 1 and (attention_mask > 0).all()):
                # if auto-regressive, skip
                attention_scores.masked_fill_(attention_mask.bool(), -float("inf"))

            attention_scores = attention_scores.float()
            attention_scores = attention_scores * query_key_layer_scaling_coeff
        

            attention_probs = F.softmax(attention_scores, dim=-1)

            if self.fp16:
                attention_probs = attention_probs.half()
            else:
                attention_probs = attention_probs.bfloat16()

            if attention_dropout is not None:
                if mpu.get_cuda_rng_tracker() is not None:
                    with mpu.get_cuda_rng_tracker().fork():
                        attention_probs = attention_dropout(attention_probs)
                else:
                    attention_probs = attention_dropout(attention_probs)
                
            # =========================
            # Context layer. [sq, b, hp]
            # =========================
            
            # value_layer -> context layer.
            # [sk, b, np, hn] --> [b, np, sq, hn]

            # context layer shape: [b, np, sq, hn]
            output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))

            # change view [sk, b * np, hn]
            value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)

            # change view [b * np, sq, sk]
            attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
            # matmul: [b * np, sq, hn]
                
            context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

            # change view [b, np, sq, hn]
            context_layer = context_layer.view(*output_size)

            # [b, np, sq, hn] --> [sq, b, np, hn]
            context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

            # [sq, b, np, hn] --> [sq, b, hp]
            new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
            context_layer = context_layer.view(*new_context_layer_shape)
            return context_layer



class FinalForwardMixin(BaseMixin):
    def __init__(self):
        super().__init__()

    def final_forward(self, logits, **kw_args):
        return F.linear(logits, self.transformer.word_embeddings.weight).transpose(0, 1).contiguous()


class UntieFinalForwardMixin(BaseMixin):
    def __init__(self, hidden_size, vocab_size, untie_head_num, layernorm_epsilon=1.0e-5):
        super().__init__()

        self.lm_head = nn.ModuleList()
        for i in range(untie_head_num):
            self.lm_head.append(
                ColumnParallelLinear(
                hidden_size,
                2 * hidden_size,
                gather_output=True,
                bias=False,
                module=self,
                name=f"lm_head.{i}",
                )
             ) # Setting bias to False always to keep it consistent with embedding tying that also does not have a bias.

        self.head_layernorm = nn.ModuleList()
        for i in range(untie_head_num):
            self.head_layernorm.append(
                LayerNorm(
                hidden_size,
                eps=layernorm_epsilon
                )
            )
        self.activation_func=GEGLU()


    def final_forward(self, logits, **kwargs):
        logits = self.lm_head[1](logits)
        logits = self.activation_func(logits)
        logits = self.head_layernorm[1](logits)
        return F.linear(logits, self.transformer.word_embeddings.weight).transpose(0, 1).contiguous()


class NonePositionEmbedding(BaseMixin):
    def __init__(self):
        super().__init__()

    def position_embedding_forward(self, position_ids, output_cross_layer, **kw_args):
        return None


class WordEmbedding(BaseMixin):
    def __init__(self):
        super().__init__()

    def word_embedding_forward(self, input_ids, output_cross_layer, **kw_args):
        return self.transformer.word_embeddings(input_ids).transpose(0, 1)


class ProteinGLMForGeneration(BaseModel):
    def __init__(self, args, transformer=None, **kwargs):
        super().__init__(
            args,
            transformer=transformer,
            **kwargs
        )
        self.add_mixin("glu-deepnorm", DeepNormWithGLUMixin(args.num_layers, args.hidden_size, args.inner_hidden_size))
        self.add_mixin(
            "fp32-softmax",
            SelfAttentionWithFP32SoftmaxMixin(args.fp16, args.hidden_size, args.num_attention_heads, args.model_parallel_size),
        )
        if args.untie_head:
            self.add_mixin("final-forward", UntieFinalForwardMixin(args.hidden_size, args.vocab_size, args.head_num))
        else:
            self.add_mixin("final-forward", FinalForwardMixin())
        self.add_mixin("non-position-embedding", NonePositionEmbedding())
        del self.transformer.position_embeddings
        self.add_mixin("word-embedding", WordEmbedding())
        self.add_mixin(
            "rotary-embedding",
            RotaryEmbeddingMixin(
                args.fp16,
                args.hidden_size,
                args.num_attention_heads,
                args.model_parallel_size,
                args.rotary_embedding_2d
            ),
        )
        self.get_mixin("glu-deepnorm").reinit()

    @classmethod
    def add_model_specific_args(cls, parser):
        group = parser.add_argument_group('ProteinGLMForGeneration', 'ProteinGLMForGeneration Configurations')
        group.add_argument('--untie-head', action='store_true', help='untie-heads')
        group.add_argument('--head-num', default=1, type=int, help='head>1')
        group.add_argument('--infer-type', default=1, type=int, help='1 for Generation')
        group.add_argument('--rotary-embedding-2d', action='store_true',
                help='If set, use 2D rotary embedding for ProtenGLM.') 
        return super().add_model_specific_args(parser)