File size: 16,019 Bytes
0dce0bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import os
import torch
import stat
import re
import time
import argparse
import numpy as np
from functools import partial
from typing import List, Tuple
import torch.distributed as dist
from sat.helpers import print_rank0
from sat import mpu, get_args, get_tokenizer
from sat.generation.utils import timed_name, generate_continually
from sat.generation.autoregressive_sampling import update_mems, get_masks_and_position_ids_default
from .utils import move_cursor_up, move_cursor_down
def get_masks_and_position_ids(seq, msa_len, max_gen_length, gmask=False):
context_length = seq.shape[1]
query_len = msa_len
max_msa_num = (max_gen_length - 2) // query_len
max_gen_length = max_msa_num * query_len + 2
tokens = torch.nn.functional.pad(seq, (0, max_gen_length - context_length), mode="constant", value=-1)
attention_mask = torch.ones((1, tokens.shape[-1], tokens.shape[-1]), device=tokens.device)
attention_mask.tril_()
attention_mask.unsqueeze_(1)
attention_mask = (attention_mask < 0.5).bool()
# <gMASK> + <SOP>
position_ids = np.zeros(max_gen_length, dtype=int)
block_position_ids = np.zeros(max_gen_length, dtype=int)
pre = 0
for msa_idx in range(max_msa_num):
position_ids[(1 + pre): (1 + pre + query_len)] = np.arange(query_len, dtype = int)
block_position_ids[(1 + pre): (1 + pre + query_len)] = msa_idx
pre += query_len
position_ids = np.stack((position_ids, block_position_ids), axis=0)
position_ids = torch.from_numpy(position_ids).to(tokens.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def generation_sequence(
model,
seqs,
strategy,
max_memory_length=100000,
get_masks_and_position_ids=get_masks_and_position_ids,
stream=False,
mems=None,
**kw_args
):
'''
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
cache, should be first mems.shape[1] parts of context_tokens.
mems are the first-level citizens here, but we don't assume what is memorized.
input mems are used when multi-phase generation.
'''
assert len(seqs.shape) == 2
# building the initial tokens, attention_mask, and position_ids
batch_size, context_length = seqs.shape
seqs, attention_mask, position_ids = get_masks_and_position_ids(seqs)
tokens = seqs[..., :context_length]
# initialize generation
counter = context_length # Last fixed index is ``counter''
index = 0 if mems is None else mems.shape[2] # Next forward starting index, also the length of cache.
num_beams = 1
# step-by-step generation
while counter < seqs.shape[1] - 1:
# Now, we want to generate seq[counter + 1],
# token[:, index: counter+1] needs forwarding.
# forward
tokens = tokens.reshape(batch_size * num_beams, -1)
mems = mems.reshape(mems.shape[0], batch_size * num_beams, mems.shape[-2], mems.shape[-1]) if mems is not None else None
model.eval()
with torch.no_grad():
logits, *output_per_layers = model(
tokens[:, index:],
position_ids[..., index: counter],
attention_mask[..., index: counter, :counter], # TODO memlen
mems=mems,
**kw_args
)
mem_kv = [o['mem_kv'] for o in output_per_layers]
mems = update_mems(mem_kv, mems, max_memory_length=max_memory_length)
logits = logits[:, -1]
index = counter
counter += 1
logits = logits.reshape(batch_size, num_beams, -1)
tokens = tokens.reshape(batch_size, num_beams, -1)
mems = mems.reshape(mems.shape[0], batch_size, num_beams, mems.shape[-2], mems.shape[-1])
tokens, mems = strategy.forward(logits, tokens, mems)
if len(tokens.shape) == 3 and num_beams == 1:
num_beams = tokens.shape[1]
position_ids = position_ids.unsqueeze(1).expand(batch_size, num_beams, 2, -1).reshape(batch_size * num_beams, 2, -1)
attention_mask_shape = attention_mask.shape[-3:]
attention_mask = attention_mask.unsqueeze(1).expand(batch_size, num_beams, -1, -1, -1).reshape(
batch_size * num_beams, *attention_mask_shape)
if strategy.is_done:
break
return strategy.finalize(tokens, mems)
def stream_generation_sequence(
model,
seqs,
strategy,
max_memory_length=100000,
get_masks_and_position_ids=get_masks_and_position_ids,
stream=False,
mems=None,
**kw_args
):
'''
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
cache, should be first mems.shape[1] parts of context_tokens.
mems are the first-level citizens here, but we don't assume what is memorized.
input mems are used when multi-phase generation.
'''
assert len(seqs.shape) == 2
# building the initial tokens, attention_mask, and position_ids
batch_size, context_length = seqs.shape
seqs, attention_mask, position_ids = get_masks_and_position_ids(seqs)
tokens = seqs[..., :context_length]
# initialize generation
counter = context_length # Last fixed index is ``counter''
index = 0 if mems is None else mems.shape[2] # Next forward starting index, also the length of cache.
num_beams = 1
# step-by-step generation
while counter < seqs.shape[1] - 1:
# Now, we want to generate seq[counter + 1],
# token[:, index: counter+1] needs forwarding.
# forward
tokens = tokens.reshape(batch_size * num_beams, -1)
mems = mems.reshape(mems.shape[0], batch_size * num_beams, mems.shape[-2], mems.shape[-1]) if mems is not None else None
model.eval()
with torch.no_grad():
logits, *output_per_layers = model(
tokens[:, index:],
position_ids[..., index: counter],
attention_mask[..., index: counter, :counter], # TODO memlen
mems=mems,
**kw_args
)
mem_kv = [o['mem_kv'] for o in output_per_layers]
mems = update_mems(mem_kv, mems, max_memory_length=max_memory_length)
logits = logits[:, -1]
index = counter
counter += 1
logits = logits.reshape(batch_size, num_beams, -1)
tokens = tokens.reshape(batch_size, num_beams, -1)
mems = mems.reshape(mems.shape[0], batch_size, num_beams, mems.shape[-2], mems.shape[-1])
tokens, mems = strategy.forward(logits, tokens, mems, is_first=False)
if len(tokens.shape) == 3 and num_beams == 1:
num_beams = tokens.shape[1]
position_ids = position_ids.unsqueeze(1).expand(batch_size, num_beams, 2, -1).reshape(batch_size * num_beams, 2, -1)
attention_mask_shape = attention_mask.shape[-3:]
attention_mask = attention_mask.unsqueeze(1).expand(batch_size, num_beams, -1, -1, -1).reshape(
batch_size * num_beams, *attention_mask_shape)
yield tokens, mems
if strategy.is_done:
break
def autoregressive_sampling(args, raw_text: str, model, tokenizer, strategy, stream=False) -> Tuple[List[str], List[str], List[List[str]]]:
# add MASK
generation_mask = "[gMASK]"
seq = []
msa_len = len(raw_text[0]) + 1
seq += [tokenizer.get_command(generation_mask)] + [tokenizer.get_command("sop")]
for each in raw_text:
seq += tokenizer.tokenize(each) + [tokenizer.get_command('<M>')]
output_list = [seq]
num_output = args.num_beams if args.sampling_strategy == "BeamSearchStrategy" else 1
seq = output_list[0]
# detect mask position
mask_token = tokenizer.get_command(generation_mask)
mask_position = seq.index(mask_token)
last_pos, answers, blanks, output_list = (
[0] * num_output,
["" for _ in range(num_output)],
[[] for _ in range(num_output)],
[]
)
icl_msas = len(raw_text)
input_seq = torch.tensor(
[seq],
dtype = torch.long,
device=args.device,
)
if args.stream_chat:
if args.chinese:
print(f"{'生成的MSA'.center(20, '*')}", flush=True)
else:
print(f"{'Virtual MSA'.center(20, '*')}", flush=True)
output_stream = stream_generation_sequence(
model = model,
seqs = input_seq,
strategy=strategy,
get_masks_and_position_ids=partial(
get_masks_and_position_ids,
msa_len = msa_len,
max_gen_length=args.max_gen_length,
gmask=True
)
)
offset = -1
for tmp_res, mems in output_stream:
if isinstance(tmp_res, torch.Tensor):
output = tmp_res.tolist()
output_list = output[0]
for i in range(len(output_list)):
output = output_list[i].tolist() if isinstance(output_list[i], torch.Tensor) else output_list[i]
bog = output.index(tokenizer.get_command("sop"))
try:
unfinished = output.index(-1)
except ValueError:
unfinished = len(output)
output_list[i] = output[:mask_position] + output[bog + 1 : unfinished]
for i, output in enumerate(output_list):
if output[-1] == tokenizer.get_command("eos"):
output = output[:-1]
answers[i] = tokenizer.detokenize(output)
tmp_ret = answers[0] # only support streaming output first line.
if mpu.get_model_parallel_rank() == 0:
if not args.multiline_stream:
vit_msa = tmp_ret[offset if offset>0 else -1:]
print(vit_msa, end='', flush=True)
offset = len(tmp_ret)
else:
print_len = 0
vit_msa = tmp_ret.split('[<M>]')[icl_msas:]
vit_msa = [_ for _ in vit_msa if len(_) > 0]
for _ in vit_msa:
print(_)
print_len += 1
move_cursor_up(print_len)
move_cursor_down(print_len)
print('\n')
output = strategy.finalize(tmp_res, mems)[0]
else:
output, _ = generation_sequence(
model = model,
seqs = input_seq,
strategy=strategy,
get_masks_and_position_ids=partial(
get_masks_and_position_ids,
msa_len = msa_len,
max_gen_length=args.max_gen_length,
gmask=True
)
)
last_pos, answers, blanks, output_list = (
[0] * num_output,
["" for _ in range(num_output)],
[[] for _ in range(num_output)],
[]
)
if isinstance(output, torch.Tensor): # different strategies
output = output.tolist()
output = output[0] # batch_size = 1
output_list.extend(output)
# clip -1s and fill back generated things into seq
for i in range(len(output_list)):
output = output_list[i].tolist() if isinstance(output_list[i], torch.Tensor) else output_list[i]
try:
unfinished = output.index(-1)
except ValueError:
unfinished = len(output)
# if output[unfinished - 1] in strategy.end_tokens:
# unfinished -= 1
bog = output.index(tokenizer.get_command("sop"))
prefix = tokenizer.detokenize(output[last_pos[i] : mask_position])
blank = tokenizer.detokenize(output[bog + 1 : unfinished])
blanks[i].append(blank)
last_pos[i] = mask_position + unfinished - (bog + 1)
output_list[i] = output[:mask_position] + output[bog + 1 : unfinished]
for i, output in enumerate(output_list):
if output[-1] == tokenizer.get_command("eos"):
output = output[:-1]
answers[i] = tokenizer.detokenize(output)
return answers
def offline_generation(args, temp, top_p, top_k, func):
os.makedirs(args.output_path, exist_ok=True)
with open(args.input_source, 'r', encoding="utf-8") as fin:
inputs = fin.readlines()
output_path = os.path.join(args.output_path, f"tmp_{temp}_p_{top_p}_k_{top_k}")
fin = open(output_path, 'w')
start_time = time.time()
for line_no, raw_text in enumerate(inputs):
if line_no % mpu.get_data_parallel_world_size() != mpu.get_data_parallel_rank():
continue
rk = dist.get_rank()
raw_text = raw_text.strip()
raw_text = raw_text.split('<M>')
main_seq = raw_text[0]
msa_len = len(main_seq) + 1
icl_msas = len(raw_text)
require_min_gen_length = msa_len * (icl_msas + 1) + 2
if args.max_gen_length < require_min_gen_length:
args.max_gen_length = require_min_gen_length # at least generate 1 msa.
if mpu.get_model_parallel_rank() == 0:
print(f'Processing No. {line_no} on model group {rk} input main seq: "{main_seq}" few-shot prompt: "{"<M>".join(raw_text[1:])}"')
if len(raw_text) == 0:
continue
ret = func(raw_text)
if mpu.get_model_parallel_rank() == 0:
if args.print_all_beams:
for idx, vit_msa in enumerate(ret):
vit_msa = vit_msa.split('[<M>]')[icl_msas:]
vit_msa = [_ for _ in vit_msa if len(_) > 0]
vit_msa_len = len(vit_msa)
vit_msa_str = '<M>'.join(vit_msa)
print('Beam: {} #Vitural Length:{} | MSA: "{}" | (Temp, P, K)=({}, {}, {}) | Taken time {:.2f}'.format(idx, vit_msa_len, vit_msa_str, temp, top_p, top_k, time.time() - start_time), flush=True)
else:
vit_msa = ret[0]
vit_msa = vit_msa.split('[<M>]')[icl_msas:]
vit_msa = [_ for _ in vit_msa if len(_) > 0]
vit_msa_len = len(vit_msa)
vit_msa_str = '<M>'.join(vit_msa)
fin.write(f"{vit_msa_str}"+'\n')
print('#Vitural Length:{} | MSA: "{}" | (Temp, P, K)=({}, {}, {}) | Taken time {:.2f}'.format(vit_msa_len, vit_msa_str, temp, top_p, top_k, time.time() - start_time), flush=True)
print()
fin.flush()
dist.barrier()
fin.close()
def online_generation(args, query, temp, top_p, top_k, func):
raw_text = query.strip()
raw_text = raw_text.split('<M>')
main_seq = raw_text[0]
msa_len = len(main_seq) + 1
icl_msas = len(raw_text)
require_min_gen_length = msa_len * (icl_msas + 1) + 2
if args.max_gen_length < require_min_gen_length:
args.max_gen_length = require_min_gen_length # at least generate 1 msa.
ret = func(raw_text)
response = []
if mpu.get_model_parallel_rank() == 0:
for idx, vit_msa in enumerate(ret):
vit_msa = vit_msa.split('[<M>]')[icl_msas:]
vit_msa = [_ for _ in vit_msa if len(_) > 0]
response.append(vit_msa)
return response
def chat_api(args, model, tokenizer, strategy, query=None): # TODO: Steam chat
if args.input_source == 'chat':
assert query is not None
ret = online_generation(args, query, temp=args.temperature, top_p = args.top_p, top_k = args.top_k, func = partial(autoregressive_sampling, args, model = model, tokenizer = tokenizer, strategy = strategy))
return ret
else:
assert not args.stream_chat, "Offline Generation don't support streaming output."
offline_generation(args, temp=args.temperature, top_p = args.top_p, top_k = args.top_k, func = partial(autoregressive_sampling, args, model = model, tokenizer = tokenizer, strategy = strategy))
|