File size: 7,292 Bytes
0dce0bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from typing import Sequence, Tuple, List, Union
import itertools
class ResidueLevelTokenizer:
"""
Tokenizer for Protein Residue Level Tokenization.
"""
def __init__(self, **kwargs):
super(ResidueLevelTokenizer, self).__init__()
self.pad_tok = ['[pad]']
self.all_toks = self.pad_tok
self._tokens = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', 'X', 'B', 'U', 'Z', 'O', '.', '-']
self.all_toks.extend(self._tokens)
self._special_tokens = ['MASK', 'gMASK', 'sMASK', 'eod', 'sop', 'eop', '</s>', '<M>']
self.set_special_tokens(self._special_tokens)
self.special_tokens['eos']=self.special_tokens['</s>']
self.special_tokens['tMASK']=self.special_tokens['MASK']
self.all_toks.extend(self._special_tokens)
self._vocab = {t: i for i, t in enumerate(self.all_toks)}
self.command_token = {'[tMASK]': 'tMASK', '[MASK]':'MASK', '[gMASK]': 'gMASK', '[sMASK]':'sMASK'}
# print('Building vocab.: {}'.format(self._vocab))
# print('Special_tokens: {}'.format(self.special_tokens))
# print('All tokens: {}'.format(self.all_toks))
def pad_id(self):
return self._vocab['[pad]']
def set_special_tokens(self, special_tokens):
"""Add a list of additional tokens to the encoder.
The additional tokens are indexed starting from the last index of the
current vocabulary in the order of the `special_tokens` list.
"""
if not special_tokens:
self.special_tokens = {}
self.special_tokens_decoder = {}
return
self.special_tokens = dict((tok, len(self.all_toks) + i) for i, tok in enumerate(special_tokens))
self.special_tokens_decoder = {v: k for k, v in self.special_tokens.items()}
def __len__(self):
return len(self._vocab)
def EncodeAsIds(self, text, process_fn=None):
"""convert sequence to idx"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
processed_text = str(processed_text)
tokens = [self.TokenToId(c) for c in processed_text]
return tokens
def IdToToken(self, idx):
if idx == 0:
return '[pad]'
elif idx in self.special_tokens_decoder:
return f"[{self.special_tokens_decoder[idx]}]"
else:
try:
tok = self.all_toks[idx]
except:
tok = '*'
return tok
def TokenToId(self, token):
if token == '[pad]':
return 0
elif token in self.special_tokens:
return self.special_tokens[token]
else:
return self._vocab[token]
def DecodeIds(self, Ids):
return ''.join([self.IdToToken(tok) for tok in Ids])
def _tokenize(self, text) -> str:
return text.split()
def tokenize(self, text, **kwargs) -> List[str]:
"""
Inspired by https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_utils.py
Converts a string in a sequence of tokens, using the tokenizer.
Args:
text (:obj:`str`):
The sequence to be encoded.
Returns:
:obj:`List[str]`: The list of tokens.
"""
def split_on_token(tok, text):
result = []
split_text = text.split(tok)
for i, sub_text in enumerate(split_text):
# AddedToken can control whitespace stripping around them.
# We use them for GPT2 and Roberta to have different behavior depending on the special token
# Cf. https://github.com/huggingface/transformers/pull/2778
# and https://github.com/huggingface/transformers/issues/3788
# We strip left and right by default
if i < len(split_text) - 1:
sub_text = sub_text.rstrip()
if i > 0:
sub_text = sub_text.lstrip()
if i == 0 and not sub_text:
result.append(tok)
elif i == len(split_text) - 1:
if sub_text:
result.append(sub_text)
else:
pass
else:
if sub_text:
result.append(sub_text)
result.append(tok)
return result
def split_on_tokens(tok_list, text):
if not text.strip():
return []
tokenized_text = []
text_list = [text]
for tok in tok_list:
tokenized_text = []
for sub_text in text_list:
if sub_text not in self._tokens:
tokenized_text.extend(split_on_token(tok, sub_text))
else:
tokenized_text.append(sub_text)
text_list = tokenized_text
return list(
itertools.chain.from_iterable(
(
self._tokenize(token)
if token not in self.all_toks
else [token]
for token in tokenized_text
)
)
)
no_split_token = self.all_toks
tokenized_text = split_on_tokens(no_split_token, text)
return self.convert_tokens_to_ids(tokenized_text)
def convert_tokens_to_ids(self, tokens):
"""Converts a sequence of tokens into ids using the vocab."""
ids = []
# print_rank_0(tokens)
# print_rank_0(self.vocab)
for token in tokens:
ids.append(self.TokenToId(token))
return ids
class proteinglm_tokenizer:
"""
Protein Tokenizer based on Residue level tokenizer
"""
def __init__(self):
name = 'ProteinTokenizer'
self.tokenizer = ResidueLevelTokenizer()
self.special_tokens = self.tokenizer.special_tokens
def IdToToken(self, idx):
return self.tokenizer.IdToToken(idx)
def TokenToId(self, token):
return self.tokenizer.TokenToId(token)
@property
def vocab_size(self):
return len(self.tokenizer)
def decode(self, token_ids):
return self.tokenizer.DecodeIds([token_ids])
@property
def eod(self):
return self.tokenizer.get_special_token('eos')
def detokenize(self, Ids, type_token=False):
new_tokens = self.tokenizer.DecodeIds(Ids)
return new_tokens
def tokenize(self, text):
ids = self.tokenizer.tokenize(text)
return ids
@property
def vocab(self):
return self.tokenizer._vocab
@property
def inv_vocab(self):
return {v:k for k, v in self.tokenizer._vocab.items()}
@property
def get_pad_id(self):
return self.tokenizer.pad_id
def get_command(self, token):
tok = token
if token in self.tokenizer.command_token:
tok = self.tokenizer.command_token[token]
return self.tokenizer.special_tokens[tok]
|