English
Protein_Language_Model
MSA Generation
File size: 7,292 Bytes
0dce0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from typing import Sequence, Tuple, List, Union
import itertools

class ResidueLevelTokenizer:
    """
    Tokenizer for Protein Residue Level Tokenization.
    """

    def __init__(self, **kwargs):
        super(ResidueLevelTokenizer, self).__init__()
        self.pad_tok = ['[pad]']
        self.all_toks = self.pad_tok
        self._tokens = ['L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', 'X', 'B', 'U', 'Z', 'O', '.', '-']
        self.all_toks.extend(self._tokens)
        self._special_tokens = ['MASK', 'gMASK', 'sMASK', 'eod', 'sop', 'eop', '</s>', '<M>']    
        self.set_special_tokens(self._special_tokens)
        self.special_tokens['eos']=self.special_tokens['</s>']
        self.special_tokens['tMASK']=self.special_tokens['MASK']
        
        self.all_toks.extend(self._special_tokens) 
        self._vocab = {t: i for i, t in enumerate(self.all_toks)}
        self.command_token = {'[tMASK]': 'tMASK', '[MASK]':'MASK', '[gMASK]': 'gMASK', '[sMASK]':'sMASK'}
        # print('Building vocab.: {}'.format(self._vocab))
        # print('Special_tokens: {}'.format(self.special_tokens))
        # print('All tokens: {}'.format(self.all_toks))

    def pad_id(self):
        return self._vocab['[pad]']
    
    def set_special_tokens(self, special_tokens):
        """Add a list of additional tokens to the encoder.
        The additional tokens are indexed starting from the last index of the
        current vocabulary in the order of the `special_tokens` list.
        """
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
        self.special_tokens = dict((tok, len(self.all_toks) + i) for i, tok in enumerate(special_tokens))
        self.special_tokens_decoder = {v: k for k, v in self.special_tokens.items()}
        
        
    def __len__(self):
        return len(self._vocab)


    def EncodeAsIds(self, text, process_fn=None):
        """convert sequence to idx"""
        processed_text = text
        if process_fn is not None:
            processed_text = process_fn(processed_text)
            processed_text = str(processed_text)
        tokens = [self.TokenToId(c) for c in processed_text]
        return tokens
    
    def IdToToken(self, idx):
        if idx == 0:
            return '[pad]'
        elif idx in self.special_tokens_decoder:
            return f"[{self.special_tokens_decoder[idx]}]"
        else:
            try:
                tok = self.all_toks[idx]
            except:
                tok = '*'
            return tok
    def TokenToId(self, token):
        if token == '[pad]':
            return 0
        elif token in self.special_tokens:
            return self.special_tokens[token]
        else:
            return self._vocab[token]
    
    def DecodeIds(self, Ids):
        return ''.join([self.IdToToken(tok) for tok in Ids])
    
    def _tokenize(self, text) -> str:
        return text.split()
    
    def tokenize(self, text, **kwargs) -> List[str]:
        """
        Inspired by https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_utils.py
        Converts a string in a sequence of tokens, using the tokenizer.

        Args:
            text (:obj:`str`):
                The sequence to be encoded.

        Returns:
            :obj:`List[str]`: The list of tokens.
        """

        def split_on_token(tok, text):
            result = []
            split_text = text.split(tok)
            for i, sub_text in enumerate(split_text):
                # AddedToken can control whitespace stripping around them.
                # We use them for GPT2 and Roberta to have different behavior depending on the special token
                # Cf. https://github.com/huggingface/transformers/pull/2778
                # and https://github.com/huggingface/transformers/issues/3788
                # We strip left and right by default
                if i < len(split_text) - 1:
                    sub_text = sub_text.rstrip()
                if i > 0:
                    sub_text = sub_text.lstrip()

                if i == 0 and not sub_text:
                    result.append(tok)
                elif i == len(split_text) - 1:
                    if sub_text:
                        result.append(sub_text)
                    else:
                        pass
                else:
                    if sub_text:
                        result.append(sub_text)
                    result.append(tok)
            return result

        def split_on_tokens(tok_list, text):
            if not text.strip():
                return []

            tokenized_text = []
            text_list = [text]
            for tok in tok_list:
                tokenized_text = []
                for sub_text in text_list:
                    if sub_text not in self._tokens:
                        tokenized_text.extend(split_on_token(tok, sub_text))
                    else:
                        tokenized_text.append(sub_text)
                text_list = tokenized_text

            return list(
                itertools.chain.from_iterable(
                    (
                        self._tokenize(token)
                        if token not in self.all_toks
                        else [token]
                        for token in tokenized_text
                    )
                )
            )
        no_split_token = self.all_toks
        tokenized_text = split_on_tokens(no_split_token, text)
        return self.convert_tokens_to_ids(tokenized_text)

    def convert_tokens_to_ids(self, tokens):
        """Converts a sequence of tokens into ids using the vocab."""
        ids = []
        # print_rank_0(tokens)
        # print_rank_0(self.vocab)
        for token in tokens:
            ids.append(self.TokenToId(token))
        return ids


class proteinglm_tokenizer:
    """
    Protein Tokenizer based on Residue level tokenizer
    """

    def __init__(self):
        name = 'ProteinTokenizer'
        self.tokenizer = ResidueLevelTokenizer()
        self.special_tokens = self.tokenizer.special_tokens


    def IdToToken(self, idx):
        return self.tokenizer.IdToToken(idx)

    def TokenToId(self, token):
        return self.tokenizer.TokenToId(token)

    @property
    def vocab_size(self):
        return len(self.tokenizer)

    def decode(self, token_ids):
        return self.tokenizer.DecodeIds([token_ids])

    @property
    def eod(self):
        return self.tokenizer.get_special_token('eos')

    def detokenize(self, Ids, type_token=False):
        new_tokens = self.tokenizer.DecodeIds(Ids)
        return new_tokens

    def tokenize(self, text):
        ids = self.tokenizer.tokenize(text)
        return ids

    @property
    def vocab(self):
        return self.tokenizer._vocab

    @property
    def inv_vocab(self):
        return {v:k for k, v in self.tokenizer._vocab.items()}

    @property
    def get_pad_id(self):
        return self.tokenizer.pad_id
    
    
    def get_command(self, token):
        tok = token
        if token in self.tokenizer.command_token:
            tok = self.tokenizer.command_token[token]
        return self.tokenizer.special_tokens[tok]