|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from sat.generation.sampling_strategies.base_strategy import top_k_logits |
|
from sat.mpu.initialize import get_model_parallel_world_size, get_model_parallel_src_rank, get_model_parallel_group |
|
|
|
class AdvancedBaseStrategy: |
|
def __init__(self, batch_size, invalid_slices=[], temperature=1., no_repeat_ngram_size = 0, top_k=200, eps=1e-4, top_p=0.0, min_gen_length=1, end_tokens=None): |
|
self.batch_size = batch_size |
|
self.invalid_slices = invalid_slices |
|
self.temperature = temperature |
|
self.topk = top_k |
|
self.top_p = top_p |
|
self.eps = eps |
|
self.min_gen_length = min_gen_length |
|
self.ngram=no_repeat_ngram_size |
|
if end_tokens is None: |
|
end_tokens = [] |
|
self.end_tokens = end_tokens |
|
self.length_generated = 0 |
|
self.cached_beam_ngram_bans = [{} for _ in range(self.batch_size)] |
|
self._is_done = np.zeros(self.batch_size, dtype=np.bool_) |
|
self._init_cache() |
|
|
|
@property |
|
def is_done(self) -> bool: |
|
return self._is_done.all() |
|
|
|
def _init_cache(self): |
|
self.length_generated = 0 |
|
self.cached_beam_ngram_bans = [[{}] for _ in range(self.batch_size)] |
|
self._is_done = np.zeros(self.batch_size, dtype=bool) |
|
|
|
|
|
def forward(self, logits, tokens, mems, is_first = False, temperature=None): |
|
|
|
batch_size, num_beam, seq_len = tokens.shape |
|
seq_len = tokens.shape[-1] |
|
if temperature is None: |
|
temperature = self.temperature |
|
logits = logits / temperature |
|
if self.min_gen_length > self.length_generated: |
|
for end_token in self.end_tokens: |
|
logits[..., end_token] = -65504 |
|
for invalid_slice in self.invalid_slices: |
|
logits[..., invalid_slice] = -65504 |
|
if self.ngram > 0 and seq_len > self.ngram: |
|
for batch_idx in range(batch_size): |
|
for i in range(num_beam): |
|
ngram_prefix = tokens[batch_idx, i, -(self.ngram - 1) :].tolist() |
|
for banned_index in self.cached_beam_ngram_bans[batch_idx][i].get(tuple(ngram_prefix), []): |
|
logits[batch_idx, i, banned_index] = -65504 |
|
logits = logits.view(-1, logits.size(-1)) |
|
logits = top_k_logits(logits, self.topk, self.top_p) |
|
probs = F.softmax(logits.float(), dim=-1) |
|
|
|
pred = torch.multinomial(probs, num_samples=1) |
|
for i in range(self.batch_size): |
|
if i >= batch_size: |
|
self._is_done[i] = True |
|
elif self._is_done[i]: |
|
pred[i] = -1 |
|
elif pred[i].item() in self.end_tokens: |
|
self._is_done[i] = True |
|
|
|
if self.ngram > 0: |
|
for batch_idx in range(batch_size): |
|
bans_continue = [] |
|
for i in range(num_beam): |
|
bans = self.cached_beam_ngram_bans[batch_idx][i].copy() |
|
ngram_prefix = tuple(tokens[batch_idx, i, -(self.ngram - 1):].tolist()) |
|
bans[ngram_prefix] = bans.get(ngram_prefix, tuple()) + (pred[batch_idx],) |
|
bans_continue.append(bans) |
|
self.cached_beam_ngram_bans[batch_idx] = bans_continue |
|
tokens = torch.cat((tokens, pred.view(tokens.shape[:-1] + (1,))), dim=-1) |
|
self.length_generated += 1 |
|
|
|
return tokens, mems |
|
|
|
def finalize(self, tokens, mems): |
|
self._is_done = np.zeros(self.batch_size, dtype=np.bool_) |
|
self._init_cache() |
|
return tokens, mems |
|
|
|
|
|
class BeamSearchStrategy: |
|
def __init__( |
|
self, |
|
batch_size, |
|
num_beams, |
|
length_penalty=1.0, |
|
consider_end=False, |
|
end_tokens=[], |
|
invalid_slices=[], |
|
no_repeat_ngram_size=0, |
|
min_gen_length=0, |
|
deterministic=False, |
|
): |
|
self.batch_size = batch_size |
|
self.num_beams = num_beams |
|
self.length_penalty = length_penalty |
|
self.end_tokens = end_tokens |
|
self.ngram = no_repeat_ngram_size |
|
self.min_gen_length = min_gen_length |
|
self.invalid_slices = invalid_slices |
|
self.consider_end = consider_end |
|
self.deterministic = deterministic |
|
self._init_cache() |
|
|
|
def _init_cache(self): |
|
self.end_beams = [[] for _ in range(self.batch_size)] |
|
self.end_beams_penalized_scores = [[] for _ in range(self.batch_size)] |
|
self.cached_beam_scores = 0 |
|
self.cached_beam_ngram_bans = [[{} for _ in range(self.num_beams)] for _ in range(self.batch_size)] |
|
self.length_generated = 0 |
|
self._is_done = np.zeros(self.batch_size, dtype=np.bool_) |
|
|
|
def _add_end_beams(self, score, beam, batch_idx): |
|
score = score / ((5.0 + len(beam)) / 6) ** self.length_penalty |
|
for i in range(len(self.end_beams[batch_idx]), -1, -1): |
|
if i == 0 or score < self.end_beams_penalized_scores[batch_idx][i - 1]: |
|
break |
|
self.end_beams[batch_idx].insert(i, beam) |
|
self.end_beams_penalized_scores[batch_idx].insert(i, score) |
|
|
|
self.end_beams[batch_idx] = self.end_beams[batch_idx][: self.num_beams] |
|
self.end_beams_penalized_scores[batch_idx] = self.end_beams_penalized_scores[batch_idx][: self.num_beams] |
|
|
|
@property |
|
def is_done(self) -> bool: |
|
return self._is_done.all() |
|
|
|
def forward(self, logits, tokens, mems): |
|
batch_size, num_beams, vocab_size = logits.shape |
|
seq_len = tokens.shape[-1] |
|
logits = logits.float() |
|
for invalid_slice in self.invalid_slices: |
|
logits[..., invalid_slice] = -65504 |
|
if self.min_gen_length > self.length_generated: |
|
for end_token in self.end_tokens: |
|
logits[..., end_token] = -65504 |
|
if self.ngram > 0 and seq_len > self.ngram: |
|
for batch_idx in range(batch_size): |
|
for i in range(num_beams): |
|
ngram_prefix = tokens[batch_idx, i, -(self.ngram - 1) :].tolist() |
|
for banned_index in self.cached_beam_ngram_bans[batch_idx][i].get(tuple(ngram_prefix), []): |
|
logits[batch_idx, i, banned_index] = -65504 |
|
|
|
next_token_scores = F.log_softmax(logits, dim=-1) |
|
prev_scores = self.cached_beam_scores |
|
if isinstance(prev_scores, torch.Tensor): |
|
prev_scores = prev_scores[..., None].expand_as(next_token_scores) |
|
next_token_scores = next_token_scores + prev_scores |
|
|
|
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) |
|
|
|
probs = F.softmax(next_token_scores, dim=-1) |
|
if num_beams < self.num_beams: |
|
probs = probs[..., :vocab_size] |
|
if self.deterministic: |
|
next_tokens = torch.topk(probs, k=(max(1, len(self.end_tokens)) + 1) * self.num_beams).indices |
|
else: |
|
next_tokens = torch.multinomial( |
|
probs, num_samples=(max(1, len(self.end_tokens)) + 1) * self.num_beams |
|
) |
|
next_token_scores = next_token_scores[torch.arange(batch_size).unsqueeze(1), next_tokens] |
|
next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1) |
|
next_tokens = next_tokens[torch.arange(batch_size).unsqueeze(1), _indices] |
|
|
|
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="trunc") |
|
next_tokens = next_tokens % vocab_size |
|
|
|
|
|
beam_continue_batch, score_continue_batch, mems_continue_batch = [], [], [] |
|
for batch_idx in range(batch_size): |
|
beam_continue = [] |
|
scores_continue = [] |
|
bans_continue = [] |
|
mems_contiue = [] |
|
for i in range(len(next_tokens[batch_idx])): |
|
beam = torch.cat((tokens[batch_idx, next_indices[batch_idx, i]], next_tokens[batch_idx, i : i + 1])) |
|
if not self._is_done[batch_idx] and int(next_tokens[batch_idx, i]) in self.end_tokens: |
|
self._add_end_beams(next_token_scores[batch_idx, i], beam, batch_idx) |
|
elif len(beam_continue) < self.num_beams: |
|
beam_continue.append(beam) |
|
mems_contiue.append(mems[:, batch_idx, next_indices[batch_idx, i]]) |
|
|
|
scores_continue.append(next_token_scores[batch_idx, i]) |
|
if self.ngram > 0: |
|
bans = self.cached_beam_ngram_bans[batch_idx][next_indices[batch_idx, i]].copy() |
|
|
|
ngram_prefix = tuple(tokens[batch_idx, next_indices[batch_idx, i], -(self.ngram - 1):].tolist()) |
|
bans[ngram_prefix] = bans.get(ngram_prefix, tuple()) + (next_tokens[batch_idx, i],) |
|
bans_continue.append(bans) |
|
else: |
|
break |
|
beam_continue_batch.append(torch.stack(beam_continue)) |
|
mems_continue_batch.append(torch.stack(mems_contiue, dim=1)) |
|
score_continue_batch.append(scores_continue) |
|
self.cached_beam_ngram_bans[batch_idx] = bans_continue |
|
tokens = torch.stack(beam_continue_batch) |
|
mems = torch.stack(mems_continue_batch, dim=1) |
|
self.cached_beam_scores = torch.tensor(score_continue_batch, device=logits.device) |
|
self.length_generated += 1 |
|
for batch_idx in range(self.batch_size): |
|
if batch_idx >= batch_size: |
|
self._is_done[batch_idx] = True |
|
elif ( |
|
len(self.end_beams[batch_idx]) == self.num_beams |
|
and self.end_beams_penalized_scores[batch_idx][-1] |
|
>= self.cached_beam_scores[batch_idx].max() / ((5.0 + (seq_len + 1)) / 6) ** self.length_penalty |
|
): |
|
self._is_done[batch_idx] = True |
|
|
|
return tokens, mems |
|
|
|
def finalize(self, tokens, mems): |
|
if self.consider_end: |
|
batch_size, num_beams = tokens.shape[:2] |
|
for batch_idx in range(batch_size): |
|
if not self._is_done[batch_idx]: |
|
for i in range(num_beams): |
|
self._add_end_beams(self.cached_beam_scores[batch_idx, i], tokens[batch_idx, i], batch_idx) |
|
mems = None |
|
ret = self.end_beams[:batch_size] |
|
else: |
|
ret = tokens |
|
self._init_cache() |
|
return ret, mems |