File size: 18,131 Bytes
d11c6aa
c54139a
 
 
 
d11c6aa
 
 
 
c54139a
 
 
d11c6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63ce1ba
 
d11c6aa
 
 
 
2e1be30
812f43f
 
d11c6aa
 
 
 
 
 
 
 
 
 
 
 
 
63ce1ba
 
d11c6aa
2e1be30
812f43f
 
2e1be30
d11c6aa
 
 
 
 
 
c54139a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
""" ChatGLM model configuration """
import torch

from collections import OrderedDict
from typing import List, Mapping, Optional, Any

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

from transformers.onnx import OnnxConfigWithPast, PatchingSpec
from transformers import PreTrainedTokenizer, TensorType, is_torch_available

logger = logging.get_logger(__name__)


class ChatGLMConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`~ChatGLMModel`].
    It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
    architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
    the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.

    Configuration objects inherit from  [`PretrainedConfig`] and can be used
    to control the model outputs. Read the documentation from  [`PretrainedConfig`]
    for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 150528):
            Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`~ChatGLMModel`] or
            [`~TFChatGLMModel`].
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 28):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        inner_hidden_size (`int`, *optional*, defaults to 16384):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        max_sequence_length (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with.
            Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
        layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether the model should return the last key/values attentions (not used by all models).
        Example:

    ```python
    >>> from configuration_chatglm import ChatGLMConfig
    >>> from modeling_chatglm import ChatGLMModel

    >>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
    >>> configuration = ChatGLMConfig()

    >>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
    >>> model = ChatGLMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
"""
    model_type = "chatglm"

    def __init__(
            self,
            vocab_size=150528,
            hidden_size=4096,
            num_layers=28,
            num_attention_heads=32,
            layernorm_epsilon=1e-5,
            use_cache=False,
            bos_token_id=150004,
            eos_token_id=150005,
            mask_token_id=150000,
            gmask_token_id=150001,
            pad_token_id=0,
            max_sequence_length=2048,
            inner_hidden_size=16384,
            position_encoding_2d=True,
            quantization_bit=0,
            pre_seq_len=None,
            prefix_projection=False,
            **kwargs
    ):
        self.num_layers = num_layers
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.max_sequence_length = max_sequence_length
        self.layernorm_epsilon = layernorm_epsilon
        self.inner_hidden_size = inner_hidden_size
        self.use_cache = use_cache
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.mask_token_id = mask_token_id
        self.gmask_token_id = gmask_token_id
        self.position_encoding_2d = position_encoding_2d
        self.quantization_bit = quantization_bit
        self.pre_seq_len = pre_seq_len
        self.prefix_projection = prefix_projection

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs
        )


class ChatGLMOnnxConfig(OnnxConfigWithPast):
    r"""
    This class is the custom configuration of a ChatGLMModel needed in exporting model to ONNX.
    Currently this need to pre-fix several model struct in modeling_chatglm.py

    Also there is still a TODO list of current ChatGLMOnnxConfig:
    1. add support for batch_size > 1
    2. add support for use_past

    in modeling_chatglm.py and its attention_fn function,we need to change several view into
    torch tensor action since reshape param may get frozen into constant in onnx model.
    here is the code:
    ```python
    >>> def attention_fn(
    >>>         self,
    >>>         query_layer,
    >>>         key_layer,
    >>>         value_layer,
    >>>         attention_mask,
    >>>         hidden_size_per_partition,
    >>>         layer_id,
    >>>         layer_past=None,
    >>>         scaling_attention_score=True,
    >>>         use_cache=False,
    >>> ):
    >>>     if layer_past is not None:
    >>>         past_key, past_value = layer_past[0], layer_past[1]
    >>>         key_layer = torch.cat((past_key, key_layer), dim=0)
    >>>         value_layer = torch.cat((past_value, value_layer), dim=0)
    >>>
    >>>     # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
    >>>     seq_len, b, nh, hidden_size = key_layer.shape
    >>>
    >>>     if use_cache:
    >>>         present = (key_layer, value_layer)
    >>>     else:
    >>>         present = None
    >>>
    >>>     query_key_layer_scaling_coeff = float(layer_id + 1)
    >>>     if scaling_attention_score:
    >>>         query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
    >>>
    >>>     # ===================================
    >>>     # Raw attention scores. [b, np, s, s]
    >>>     # ===================================
    >>>
    >>>     # [b, np, sq, sk]
    >>>     # # output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
    >>>
    >>>     # [sq, b, np, hn] -> [sq, b * np, hn]
    >>>     # query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
    >>>     query_layer = query_layer.flatten(start_dim=1, end_dim=2)
    >>>
    >>>     # [sk, b, np, hn] -> [sk, b * np, hn]
    >>>     # key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
    >>>     key_layer = key_layer.flatten(start_dim=1, end_dim=2)
    >>>
    >>>     matmul_result = torch.zeros(
    >>>         1, 1, 1,
    >>>         dtype=query_layer.dtype,
    >>>         device=query_layer.device,
    >>>     )
    >>>
    >>>     matmul_result = torch.baddbmm(
    >>>         matmul_result,
    >>>         query_layer.transpose(0, 1),  # [b * np, sq, hn]
    >>>         key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
    >>>         beta=0.0,
    >>>         alpha=1.0,
    >>>     )
    >>>
    >>>     # [b * np, sq, sk] -> [b, np, sq, sk]
    >>>     # attention_scores = matmul_result.view(*output_size)
    >>>     attention_scores = matmul_result.unsqueeze(0)
    >>>
    >>>     if self.scale_mask_softmax:
    >>>         self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
    >>>         attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
    >>>     else:
    >>>         # if not (attention_mask == 0).all():
    >>>         #     # if auto-regressive, skip
    >>>         attention_scores.masked_fill_(attention_mask, -10000.0)
    >>>         dtype = attention_scores.dtype
    >>>         attention_scores = attention_scores.float()
    >>>         attention_scores = attention_scores * query_key_layer_scaling_coeff
    >>>
    >>>         attention_probs = F.softmax(attention_scores, dim=-1)
    >>>
    >>>         attention_probs = attention_probs.type(dtype)
    >>>
    >>>     # =========================
    >>>     # Context layer. [sq, b, hp]
    >>>     # =========================
    >>>
    >>>     # value_layer -> context layer.
    >>>     # [sk, b, np, hn] --> [b, np, sq, hn]
    >>>
    >>>     # context layer shape: [b, np, sq, hn]
    >>>     # output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
    >>>
    >>>     # change view [sk, b * np, hn]
    >>>     # value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
    >>>     value_layer = value_layer.flatten(start_dim=1, end_dim=2)
    >>>
    >>>     # change view [b * np, sq, sk]
    >>>     # attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
    >>>     attention_probs = attention_probs.flatten(start_dim=0, end_dim=1)
    >>>
    >>>     # matmul: [b * np, sq, hn]
    >>>     context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
    >>>
    >>>     # change view [b, np, sq, hn]
    >>>     # context_layer = context_layer.reshape(b, np, sq, hidden_size)
    >>>     context_layer = context_layer.unsqueeze(0)
    >>>
    >>>     # [b, np, sq, hn] --> [sq, b, np, hn]
    >>>     context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
    >>>
    >>>     # [sq, b, np, hn] --> [sq, b, hp]
    >>>     # new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
    >>>     # context_layer = context_layer.view(*new_context_layer_shape)
    >>>     context_layer = context_layer.flatten(start_dim=2)
    >>>
    >>>     outputs = (context_layer, present, attention_probs)
    >>>
    >>>     return outputs
    '''
    mainly aviod using view with dynamic size

    after change the modeling_chatglm.py, you can simply use following code to export and test the onnx model
    ```python
    >>> from pathlib import Path
    >>> from transformers import AutoTokenizer, AutoModel
    >>> from transformers.onnx import export, validate_model_outputs
    >>>
    >>> # load model
    >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
    >>> pt_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
    >>> pt_model = pt_model.float()  # only tested in CPU for now
    >>> pt_model.eval()
    >>> # define path for saving onnx model
    >>> onnx_path = Path(f"model/chatglm-6b.onnx")
    >>> onnx_path.parent.mkdir(exist_ok=True)
    >>> # convert model to onnx
    >>> onnx_config_chatglm = ChatGLMOnnxConfig(pt_model.config, task="causal-lm")
    >>> onnx_inputs, onnx_outputs = export(tokenizer, pt_model,
    >>>                                    onnx_config_chatglm, onnx_config_chatglm.default_onnx_opset,
    >>>                                    onnx_path)
    >>> # test onnx model
    >>> validate_model_outputs(onnx_config_chatglm, tokenizer, pt_model, onnx_path, onnx_outputs, atol=1e-4)
    ```
    """
    # TODO support dynamic batch size
    default_fixed_batch = 1

    def __init__(
        self,
        config: PretrainedConfig,
        task: str = "default",
        patching_specs: List[PatchingSpec] = None,
        use_past: bool = False,
    ):
        super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)

    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
        if self.use_past:
            # TODO support use_past
            # self.fill_with_past_key_values_(common_inputs, direction="inputs")
            # common_inputs["attention_mask"] = \
            #     {0: "batch", 1: "past_sequence + sequence", 2: "past_sequence + sequence"}
            raise NotImplementedError('position_ids do not support past_key_values yet.')
        else:
            # remind the order
            common_inputs["position_ids"] = {0: "batch", 2: "sequence"}
            common_inputs["attention_mask"] = {0: "batch", 2: "sequence", 3: "sequence"}

        return common_inputs

    @property
    def num_layers(self) -> int:
        return self._config.n_layer

    @property
    def num_attention_heads(self) -> int:
        return self._config.n_head

    def get_masks(self, input_ids, device=None):
        """
        reference from modeling_chatglm.get_masks
        """
        batch_size, seq_length = input_ids.shape
        context_lengths = [seq.tolist().index(self._config.bos_token_id) for seq in input_ids]
        if device:
            attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
        else:
            attention_mask = torch.ones((batch_size, seq_length, seq_length), device=input_ids.device)
        attention_mask.tril_()
        for i, context_length in enumerate(context_lengths):
            attention_mask[i, :, :context_length] = 1
        attention_mask.unsqueeze_(1)
        attention_mask = (attention_mask < 0.5).bool()

        # print("attention_mask", attention_mask.shape)
        return attention_mask

    def get_position_ids(self, input_ids, mask_positions, device=None, use_gmasks=None):
        batch_size, seq_length = input_ids.shape
        if device is None:
            device = input_ids.device
        if use_gmasks is None:
            use_gmasks = [False] * batch_size
        context_lengths = [seq.tolist().index(self._config.bos_token_id) for seq in input_ids]
        if self._config.position_encoding_2d:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
            for i, context_length in enumerate(context_lengths):
                position_ids[i, context_length:] = mask_positions[i]
            block_position_ids = [torch.cat((
                torch.zeros(context_length, dtype=torch.long, device=device),
                torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
            )) for context_length in context_lengths]
            block_position_ids = torch.stack(block_position_ids, dim=0)
            position_ids = torch.stack((position_ids, block_position_ids), dim=1)
        else:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
            for i, context_length in enumerate(context_lengths):
                if not use_gmasks[i]:
                    position_ids[context_length:] = mask_positions[i]

        # print("position_ids", position_ids.shape)
        return position_ids

    def generate_dummy_inputs(
        self,
        tokenizer: PreTrainedTokenizer,
        batch_size: int = default_fixed_batch,
        seq_length: int = -1,
        is_pair: bool = False,
        framework: Optional[TensorType] = None,
    ) -> Mapping[str, Any]:
        common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
            tokenizer, batch_size=self.default_fixed_batch, seq_length=seq_length, is_pair=is_pair, framework=framework
        )
        # check if the mode is using fixed batch size
        if batch_size != self.default_fixed_batch:
            logger.warning('batch size is not fixed, force change into fixed batch size: %d.'
                           % self.default_fixed_batch)

        # We need to order the input in the way they appears in the forward()
        ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})

        # Need to add the past_keys
        if self.use_past:
            if not is_torch_available():
                raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
            else:
                # TODO support use_past
                # import torch
                #
                # batch, seqlen = common_inputs["input_ids"].shape
                # # Not using the same length for past_key_values
                # past_key_values_length = seqlen + 2
                # past_shape = (
                #     batch,
                #     self.num_attention_heads,
                #     past_key_values_length,
                #     self._config.hidden_size // self.num_attention_heads,
                # )
                # ordered_inputs["past_key_values"] = [
                #     (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
                # ]
                raise NotImplementedError('position_ids do not support past_key_values yet.')

        # Need to add the attention_mask manually
        # 1. add attention_mask
        ordered_inputs["attention_mask"] = self.get_masks(common_inputs["input_ids"])
        # 2. add position_ids
        MASK, gMASK = self._config.mask_token_id, self._config.gmask_token_id
        seqs = common_inputs["input_ids"].tolist()
        mask_positions, use_gmasks = [], []
        for seq in seqs:
            mask_token = gMASK if gMASK in seq else MASK
            use_gmask = mask_token == gMASK
            mask_positions.append(seq.index(mask_token))
            use_gmasks.append(use_gmask)
        ordered_inputs["position_ids"] = self.get_position_ids(common_inputs["input_ids"],
                                                               mask_positions, use_gmasks=use_gmasks)

        if self.use_past:
            # mask_dtype = ordered_inputs["attention_mask"].dtype
            # ordered_inputs["attention_mask"] = torch.cat(
            #     [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
            # )
            raise NotImplementedError('position_ids do not support past_key_values yet.')

        return ordered_inputs

    @property
    def default_onnx_opset(self) -> int:
        return 13