File size: 2,945 Bytes
066a57e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
{
"lang":"sr",
"name":"pln_tesla_dbmu",
"version":"1.0.0",
"description":"sr_pln_tesla_dbmu is a spaCy model meticulously fine-tuned for Part-of-Speech Tagging, Lemmatization, and Named Entity Recognition in Serbian language texts. This advanced model incorporates a transformer layer based on distilbert/distilbert-base-multilingual-cased, enhancing its analytical capabilities. It is proficient in identifying 7 distinct categories of entities: PERS (persons), ROLE (professions), DEMO (demonyms), ORG (organizations), LOC (locations), WORK (artworks), and EVENT (events). Detailed information about these categories is available in the accompanying table. The development of this model has been made possible through the support of the Science Fund of the Republic of Serbia, under grant #7276, for the project 'Text Embeddings - Serbian Language Applications - TESLA'.",
"author":"Milica Ikoni\u0107 Ne\u0161i\u0107, Sa\u0161a Petalinkar, Mihailo \u0160kori\u0107, Ranka Stankovi\u0107",
"email":"",
"url":"https://tesla.rgf.bg.ac.rs/",
"license":"CC BY-SA 3.0",
"spacy_version":">=3.7.2,<3.8.0",
"spacy_git_version":"a89eae928",
"vectors":{
"width":0,
"vectors":0,
"keys":0,
"name":null
},
"labels":{
"transformer":[
],
"tagger":[
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"VERB",
"X"
],
"ner":[
"DEMO",
"EVENT",
"LOC",
"ORG",
"PERS",
"ROLE",
"WORK"
]
},
"pipeline":[
"transformer",
"tagger",
"trainable_lemmatizer",
"ner"
],
"components":[
"transformer",
"tagger",
"trainable_lemmatizer",
"ner"
],
"disabled":[
],
"performance":{
"tag_acc":0.9815057009,
"lemma_acc":0.9797101778,
"ents_f":0.9485941877,
"ents_p":0.9465813405,
"ents_r":0.9506156136,
"ents_per_type":{
"ROLE":{
"p":0.8503487635,
"r":0.8804990151,
"f":0.8651612903
},
"PERS":{
"p":0.9804580533,
"r":0.9852407755,
"f":0.982843596
},
"LOC":{
"p":0.9490266393,
"r":0.9765419083,
"f":0.9625876851
},
"DEMO":{
"p":0.9109375,
"r":0.9181102362,
"f":0.9145098039
},
"ORG":{
"p":0.8142164782,
"r":0.6885245902,
"f":0.7461139896
},
"WORK":{
"p":0.5918367347,
"r":0.4084507042,
"f":0.4833333333
},
"EVENT":{
"p":0.5909090909,
"r":0.40625,
"f":0.4814814815
}
},
"transformer_loss":6049.5975609321,
"tagger_loss":3599.5084625129,
"trainable_lemmatizer_loss":4660.6587796062,
"ner_loss":1756.5368891107
},
"requirements":[
"spacy-transformers>=1.3.4,<1.4.0"
]
} |