Taratata commited on
Commit
79f588d
·
1 Parent(s): 7d6dd4c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.27 +/- 0.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23df2ce9164670a28f19cc17722c4e7862889f868867f64d19e73b54bcfc550c
3
+ size 108008
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd36c509ca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fd36c506870>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 100000,
45
+ "_total_timesteps": 100000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677624905612420593,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXBZoPRu8sDzbvNU+XBZoPRu8sDzbvNU+XBZoPRu8sDzbvNU+XBZoPRu8sDzbvNU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6D6Yv2Upx71XKt8+PCLLv4ogiT8SkKo/5jd9P3g9lb3PfrQ+omhNPuFKy7/la4Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABcFmg9G7ywPNu81T5+Ao+8VyT0urqikTxcFmg9G7ywPNu81T5+Ao+8VyT0urqikTxcFmg9G7ywPNu81T5+Ao+8VyT0urqikTxcFmg9G7ywPNu81T5+Ao+8VyT0urqikTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.05666195 0.02157407 0.41745648]\n [0.05666195 0.02157407 0.41745648]\n [0.05666195 0.02157407 0.41745648]\n [0.05666195 0.02157407 0.41745648]]",
60
+ "desired_goal": "[[-1.1894197 -0.09724692 0.4358699 ]\n [-1.5869823 1.0713055 1.3325217 ]\n [ 0.9891342 -0.07287115 0.35252997]\n [ 0.20059446 -1.5882226 1.0345427 ]]",
61
+ "observation": "[[ 0.05666195 0.02157407 0.41745648 -0.01745724 -0.00186266 0.01777779]\n [ 0.05666195 0.02157407 0.41745648 -0.01745724 -0.00186266 0.01777779]\n [ 0.05666195 0.02157407 0.41745648 -0.01745724 -0.00186266 0.01777779]\n [ 0.05666195 0.02157407 0.41745648 -0.01745724 -0.00186266 0.01777779]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWUioPDehqj1U8qk9npAYvn0I5j3oorE9YD46vfCsGL6voUs+hxevvajhkz0kCGg8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.02054231 0.08331531 0.08298174]\n [-0.14898917 0.11232088 0.0867365 ]\n [-0.04546964 -0.1490972 0.19885896]\n [-0.08549409 0.07220775 0.0141621 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6WUUyy1t+b+UhpRSlIwBbJRLMowBdJRHQIHZDeO4oZ11fZQoaAZoCWgPQwjHEWvxKcD6v5SGlFKUaBVLMmgWR0CB1kvysjmkdX2UKGgGaAloD0MI9Ix9ycZD97+UhpRSlGgVSzJoFkdAgdT5KnNxEXV9lChoBmgJaA9DCBfVIqKYvPa/lIaUUpRoFUsyaBZHQIHT5UNrj5t1fZQoaAZoCWgPQwgGvqJbr+n6v5SGlFKUaBVLMmgWR0CB3S8TSLIgdX2UKGgGaAloD0MIRga5izAF+L+UhpRSlGgVSzJoFkdAgdptsWO6unV9lChoBmgJaA9DCGK+vAD7KPy/lIaUUpRoFUsyaBZHQIHZG1KGtZF1fZQoaAZoCWgPQwi/Y3jsZ/H8v5SGlFKUaBVLMmgWR0CB2Ah8IAwPdX2UKGgGaAloD0MI++jUlc/y9L+UhpRSlGgVSzJoFkdAgeFoV2zOX3V9lChoBmgJaA9DCDrLLEKxVfm/lIaUUpRoFUsyaBZHQIHepjpcHGF1fZQoaAZoCWgPQwj+Ddqrj8f0v5SGlFKUaBVLMmgWR0CB3VM5fdAPdX2UKGgGaAloD0MIHyxjQze79r+UhpRSlGgVSzJoFkdAgdw974SHunV9lChoBmgJaA9DCNvDXihgu/W/lIaUUpRoFUsyaBZHQIHltM/QjUx1fZQoaAZoCWgPQwgicY+lD932v5SGlFKUaBVLMmgWR0CB4vRqGlANdX2UKGgGaAloD0MIajNOQ1Rh97+UhpRSlGgVSzJoFkdAgeGh4Uvf0nV9lChoBmgJaA9DCF7Ymq28ZPm/lIaUUpRoFUsyaBZHQIHgjNt65Xl1fZQoaAZoCWgPQwhkk/yIX7H4v5SGlFKUaBVLMmgWR0CB6jkbxVhkdX2UKGgGaAloD0MIa2EW2jnN+L+UhpRSlGgVSzJoFkdAged24EwFknV9lChoBmgJaA9DCFYQA137gvm/lIaUUpRoFUsyaBZHQIHmJHqeK9B1fZQoaAZoCWgPQwimmllLASn1v5SGlFKUaBVLMmgWR0CB5Q9ugpSadX2UKGgGaAloD0MIWMoyxLFu+r+UhpRSlGgVSzJoFkdAge6ThHbypnV9lChoBmgJaA9DCC4e3nNg+fi/lIaUUpRoFUsyaBZHQIHr1FjNILB1fZQoaAZoCWgPQwhi83FtqJj3v5SGlFKUaBVLMmgWR0CB6oRIz3yqdX2UKGgGaAloD0MI02hyMQYW+L+UhpRSlGgVSzJoFkdAgelvtdAxBXV9lChoBmgJaA9DCHZQiesYl/W/lIaUUpRoFUsyaBZHQIHyx75VOsV1fZQoaAZoCWgPQwiuDoC4q9fyv5SGlFKUaBVLMmgWR0CB8AY2Kl54dX2UKGgGaAloD0MImS7E6o8w+L+UhpRSlGgVSzJoFkdAge6z1K5CnnV9lChoBmgJaA9DCPjCZKpgVPq/lIaUUpRoFUsyaBZHQIHtnwLE1l51fZQoaAZoCWgPQwggfZOmQZH3v5SGlFKUaBVLMmgWR0CB9wyi22G7dX2UKGgGaAloD0MIzPCfbqBA97+UhpRSlGgVSzJoFkdAgfRKmCROlHV9lChoBmgJaA9DCEgxQKIJ1PW/lIaUUpRoFUsyaBZHQIHy9+LFXJZ1fZQoaAZoCWgPQwguVz82yQ/yv5SGlFKUaBVLMmgWR0CB8eK64Ds/dX2UKGgGaAloD0MIj3Ba8KIv87+UhpRSlGgVSzJoFkdAgftjHGS6lXV9lChoBmgJaA9DCNycSgaAKvi/lIaUUpRoFUsyaBZHQIH4oQe3hGZ1fZQoaAZoCWgPQwgdjxmojD/5v5SGlFKUaBVLMmgWR0CB908La24NdX2UKGgGaAloD0MITz3S4LY2+b+UhpRSlGgVSzJoFkdAgfY5nUUfxXV9lChoBmgJaA9DCBMro5HP6/e/lIaUUpRoFUsyaBZHQIH/hLkCFK11fZQoaAZoCWgPQwirWtJRDib1v5SGlFKUaBVLMmgWR0CB/MQlKK51dX2UKGgGaAloD0MI1Ce5wyay8b+UhpRSlGgVSzJoFkdAgftxMewLVnV9lChoBmgJaA9DCLwH6L6cWf2/lIaUUpRoFUsyaBZHQIH6W1UlzEJ1fZQoaAZoCWgPQwjT3uALkyn3v5SGlFKUaBVLMmgWR0CCA9lg+hXbdX2UKGgGaAloD0MImRBzSdV287+UhpRSlGgVSzJoFkdAggEXVbzK93V9lChoBmgJaA9DCPLR4oxhzvi/lIaUUpRoFUsyaBZHQIH/xigCfYl1fZQoaAZoCWgPQwjgEoB/SlX7v5SGlFKUaBVLMmgWR0CB/rGMGX5WdX2UKGgGaAloD0MIlQuVfy2v8r+UhpRSlGgVSzJoFkdAggg1LzwtrnV9lChoBmgJaA9DCFX7dDxmYPK/lIaUUpRoFUsyaBZHQIIFc1CPZIx1fZQoaAZoCWgPQwisV5HRAcn1v5SGlFKUaBVLMmgWR0CCBCDW9US7dX2UKGgGaAloD0MItW/urx53+b+UhpRSlGgVSzJoFkdAggMMqrilznV9lChoBmgJaA9DCKvpeqLrwgHAlIaUUpRoFUsyaBZHQIIMgcWCVbB1fZQoaAZoCWgPQwjovpzZrhD+v5SGlFKUaBVLMmgWR0CCCb9KmKqGdX2UKGgGaAloD0MIVmKelbSi+r+UhpRSlGgVSzJoFkdAgghsIeHSGHV9lChoBmgJaA9DCC8UsB2MWPa/lIaUUpRoFUsyaBZHQIIHV+CsfaJ1fZQoaAZoCWgPQwhCPujZrHr3v5SGlFKUaBVLMmgWR0CCEKuoxYaHdX2UKGgGaAloD0MIjXxe8dSj97+UhpRSlGgVSzJoFkdAgg3qUeMho3V9lChoBmgJaA9DCOkLIef9P/m/lIaUUpRoFUsyaBZHQIIMl1GLDQ91fZQoaAZoCWgPQwg33h0Zq032v5SGlFKUaBVLMmgWR0CCC4NDtw71dX2UKGgGaAloD0MIBqBRuvSv+b+UhpRSlGgVSzJoFkdAghTYPf8/EHV9lChoBmgJaA9DCBlXXByVW/a/lIaUUpRoFUsyaBZHQIISFpyp71J1fZQoaAZoCWgPQwg89UiD2xr6v5SGlFKUaBVLMmgWR0CCEMP+XJHRdX2UKGgGaAloD0MIDr3Fw3uO/L+UhpRSlGgVSzJoFkdAgg+x4IKMN3V9lChoBmgJaA9DCLZN8bioVva/lIaUUpRoFUsyaBZHQIIZP8VHnU51fZQoaAZoCWgPQwhma32R0Nb0v5SGlFKUaBVLMmgWR0CCFn1nuiN9dX2UKGgGaAloD0MIh01k5gIX/b+UhpRSlGgVSzJoFkdAghUq2SdOI3V9lChoBmgJaA9DCKOQZFbv8Pe/lIaUUpRoFUsyaBZHQIIUFcbBGhF1fZQoaAZoCWgPQwifVWZK66/4v5SGlFKUaBVLMmgWR0CCHZBAOavzdX2UKGgGaAloD0MIXRlUG5wI87+UhpRSlGgVSzJoFkdAghrOkDZDiXV9lChoBmgJaA9DCHqJsUy/xPy/lIaUUpRoFUsyaBZHQIIZe9QGfPJ1fZQoaAZoCWgPQwiI1/ULdkP7v5SGlFKUaBVLMmgWR0CCGGaHbh3rdX2UKGgGaAloD0MIQIhkyLF1+L+UhpRSlGgVSzJoFkdAgiHehwl0HXV9lChoBmgJaA9DCHkFoidlEv6/lIaUUpRoFUsyaBZHQIIfIT9KmKt1fZQoaAZoCWgPQwizJ4HNObj2v5SGlFKUaBVLMmgWR0CCHdKoybhFdX2UKGgGaAloD0MIvqJbr+lB/b+UhpRSlGgVSzJoFkdAghzB0p3HJnV9lChoBmgJaA9DCLJ/ngYMUvS/lIaUUpRoFUsyaBZHQIIqK5Xlr/N1fZQoaAZoCWgPQwhgdHlzuBb2v5SGlFKUaBVLMmgWR0CCJ2wY+B6KdX2UKGgGaAloD0MIWwndJXGW+L+UhpRSlGgVSzJoFkdAgiYeumrKeXV9lChoBmgJaA9DCDoDIy9rIvi/lIaUUpRoFUsyaBZHQIIlFUMoc711fZQoaAZoCWgPQwjjVGthFlr5v5SGlFKUaBVLMmgWR0CCMsHN5dGBdX2UKGgGaAloD0MIFsJqLGFt97+UhpRSlGgVSzJoFkdAgjAC5uqFRHV9lChoBmgJaA9DCKUTCaaa2fa/lIaUUpRoFUsyaBZHQIIuvJcPe551fZQoaAZoCWgPQwh9IeS8/8/4v5SGlFKUaBVLMmgWR0CCLapVCHARdX2UKGgGaAloD0MILH3ogvrW+L+UhpRSlGgVSzJoFkdAgjui+UQkHHV9lChoBmgJaA9DCHCwNzEkZ/a/lIaUUpRoFUsyaBZHQII44593KSx1fZQoaAZoCWgPQwge4bTgRd/2v5SGlFKUaBVLMmgWR0CCN5PsRg7YdX2UKGgGaAloD0MIzo5U3/klAsCUhpRSlGgVSzJoFkdAgjaBHkLhJnV9lChoBmgJaA9DCCeJJeXuM/q/lIaUUpRoFUsyaBZHQIJFF4oqkM11fZQoaAZoCWgPQwh9BtSbUfP4v5SGlFKUaBVLMmgWR0CCQln/1g6VdX2UKGgGaAloD0MIS1ZFuMmo9r+UhpRSlGgVSzJoFkdAgkELHEMspXV9lChoBmgJaA9DCD8e+u5WVvi/lIaUUpRoFUsyaBZHQII/+PcSGrV1fZQoaAZoCWgPQwirJR3lYPb2v5SGlFKUaBVLMmgWR0CCTa0waisXdX2UKGgGaAloD0MInaBNDp+09L+UhpRSlGgVSzJoFkdAgkrzRQaaTnV9lChoBmgJaA9DCIkl5e5zvPi/lIaUUpRoFUsyaBZHQIJJpOzposZ1fZQoaAZoCWgPQwjJWkOpvYj1v5SGlFKUaBVLMmgWR0CCSJRQaaTfdX2UKGgGaAloD0MIvHfUmBBz/L+UhpRSlGgVSzJoFkdAglW9UbT+enV9lChoBmgJaA9DCGHGFKxxtvm/lIaUUpRoFUsyaBZHQIJTAO6NEPV1fZQoaAZoCWgPQwhvg9pv7QT7v5SGlFKUaBVLMmgWR0CCUbIK+i8GdX2UKGgGaAloD0MIFAfQ7/u397+UhpRSlGgVSzJoFkdAglCgbIcR2HV9lChoBmgJaA9DCDRLAtTUsvq/lIaUUpRoFUsyaBZHQIJdUG5c1O11fZQoaAZoCWgPQwhlcf+R6RD2v5SGlFKUaBVLMmgWR0CCWpFwT/Q0dX2UKGgGaAloD0MIAfp9/+aF9r+UhpRSlGgVSzJoFkdAgllCQtBfKXV9lChoBmgJaA9DCMmP+BVr+Pi/lIaUUpRoFUsyaBZHQIJYMIomXw91ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 8553,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d5854a68aee259398a614bb98df45019849059464a7f0362f6317337f6fe59e
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee9377c1f6f41459a05a42506d0e335040c0bd1701e2b9f902905572a366bf82
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd36c509ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd36c506870>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677624905612420593, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXBZoPRu8sDzbvNU+XBZoPRu8sDzbvNU+XBZoPRu8sDzbvNU+XBZoPRu8sDzbvNU+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6D6Yv2Upx71XKt8+PCLLv4ogiT8SkKo/5jd9P3g9lb3PfrQ+omhNPuFKy7/la4Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABcFmg9G7ywPNu81T5+Ao+8VyT0urqikTxcFmg9G7ywPNu81T5+Ao+8VyT0urqikTxcFmg9G7ywPNu81T5+Ao+8VyT0urqikTxcFmg9G7ywPNu81T5+Ao+8VyT0urqikTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.05666195 0.02157407 0.41745648]\n [0.05666195 0.02157407 0.41745648]\n [0.05666195 0.02157407 0.41745648]\n [0.05666195 0.02157407 0.41745648]]", "desired_goal": "[[-1.1894197 -0.09724692 0.4358699 ]\n [-1.5869823 1.0713055 1.3325217 ]\n [ 0.9891342 -0.07287115 0.35252997]\n [ 0.20059446 -1.5882226 1.0345427 ]]", "observation": "[[ 0.05666195 0.02157407 0.41745648 -0.01745724 -0.00186266 0.01777779]\n [ 0.05666195 0.02157407 0.41745648 -0.01745724 -0.00186266 0.01777779]\n [ 0.05666195 0.02157407 0.41745648 -0.01745724 -0.00186266 0.01777779]\n [ 0.05666195 0.02157407 0.41745648 -0.01745724 -0.00186266 0.01777779]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWUioPDehqj1U8qk9npAYvn0I5j3oorE9YD46vfCsGL6voUs+hxevvajhkz0kCGg8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02054231 0.08331531 0.08298174]\n [-0.14898917 0.11232088 0.0867365 ]\n [-0.04546964 -0.1490972 0.19885896]\n [-0.08549409 0.07220775 0.0141621 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6WUUyy1t+b+UhpRSlIwBbJRLMowBdJRHQIHZDeO4oZ11fZQoaAZoCWgPQwjHEWvxKcD6v5SGlFKUaBVLMmgWR0CB1kvysjmkdX2UKGgGaAloD0MI9Ix9ycZD97+UhpRSlGgVSzJoFkdAgdT5KnNxEXV9lChoBmgJaA9DCBfVIqKYvPa/lIaUUpRoFUsyaBZHQIHT5UNrj5t1fZQoaAZoCWgPQwgGvqJbr+n6v5SGlFKUaBVLMmgWR0CB3S8TSLIgdX2UKGgGaAloD0MIRga5izAF+L+UhpRSlGgVSzJoFkdAgdptsWO6unV9lChoBmgJaA9DCGK+vAD7KPy/lIaUUpRoFUsyaBZHQIHZG1KGtZF1fZQoaAZoCWgPQwi/Y3jsZ/H8v5SGlFKUaBVLMmgWR0CB2Ah8IAwPdX2UKGgGaAloD0MI++jUlc/y9L+UhpRSlGgVSzJoFkdAgeFoV2zOX3V9lChoBmgJaA9DCDrLLEKxVfm/lIaUUpRoFUsyaBZHQIHepjpcHGF1fZQoaAZoCWgPQwj+Ddqrj8f0v5SGlFKUaBVLMmgWR0CB3VM5fdAPdX2UKGgGaAloD0MIHyxjQze79r+UhpRSlGgVSzJoFkdAgdw974SHunV9lChoBmgJaA9DCNvDXihgu/W/lIaUUpRoFUsyaBZHQIHltM/QjUx1fZQoaAZoCWgPQwgicY+lD932v5SGlFKUaBVLMmgWR0CB4vRqGlANdX2UKGgGaAloD0MIajNOQ1Rh97+UhpRSlGgVSzJoFkdAgeGh4Uvf0nV9lChoBmgJaA9DCF7Ymq28ZPm/lIaUUpRoFUsyaBZHQIHgjNt65Xl1fZQoaAZoCWgPQwhkk/yIX7H4v5SGlFKUaBVLMmgWR0CB6jkbxVhkdX2UKGgGaAloD0MIa2EW2jnN+L+UhpRSlGgVSzJoFkdAged24EwFknV9lChoBmgJaA9DCFYQA137gvm/lIaUUpRoFUsyaBZHQIHmJHqeK9B1fZQoaAZoCWgPQwimmllLASn1v5SGlFKUaBVLMmgWR0CB5Q9ugpSadX2UKGgGaAloD0MIWMoyxLFu+r+UhpRSlGgVSzJoFkdAge6ThHbypnV9lChoBmgJaA9DCC4e3nNg+fi/lIaUUpRoFUsyaBZHQIHr1FjNILB1fZQoaAZoCWgPQwhi83FtqJj3v5SGlFKUaBVLMmgWR0CB6oRIz3yqdX2UKGgGaAloD0MI02hyMQYW+L+UhpRSlGgVSzJoFkdAgelvtdAxBXV9lChoBmgJaA9DCHZQiesYl/W/lIaUUpRoFUsyaBZHQIHyx75VOsV1fZQoaAZoCWgPQwiuDoC4q9fyv5SGlFKUaBVLMmgWR0CB8AY2Kl54dX2UKGgGaAloD0MImS7E6o8w+L+UhpRSlGgVSzJoFkdAge6z1K5CnnV9lChoBmgJaA9DCPjCZKpgVPq/lIaUUpRoFUsyaBZHQIHtnwLE1l51fZQoaAZoCWgPQwggfZOmQZH3v5SGlFKUaBVLMmgWR0CB9wyi22G7dX2UKGgGaAloD0MIzPCfbqBA97+UhpRSlGgVSzJoFkdAgfRKmCROlHV9lChoBmgJaA9DCEgxQKIJ1PW/lIaUUpRoFUsyaBZHQIHy9+LFXJZ1fZQoaAZoCWgPQwguVz82yQ/yv5SGlFKUaBVLMmgWR0CB8eK64Ds/dX2UKGgGaAloD0MIj3Ba8KIv87+UhpRSlGgVSzJoFkdAgftjHGS6lXV9lChoBmgJaA9DCNycSgaAKvi/lIaUUpRoFUsyaBZHQIH4oQe3hGZ1fZQoaAZoCWgPQwgdjxmojD/5v5SGlFKUaBVLMmgWR0CB908La24NdX2UKGgGaAloD0MITz3S4LY2+b+UhpRSlGgVSzJoFkdAgfY5nUUfxXV9lChoBmgJaA9DCBMro5HP6/e/lIaUUpRoFUsyaBZHQIH/hLkCFK11fZQoaAZoCWgPQwirWtJRDib1v5SGlFKUaBVLMmgWR0CB/MQlKK51dX2UKGgGaAloD0MI1Ce5wyay8b+UhpRSlGgVSzJoFkdAgftxMewLVnV9lChoBmgJaA9DCLwH6L6cWf2/lIaUUpRoFUsyaBZHQIH6W1UlzEJ1fZQoaAZoCWgPQwjT3uALkyn3v5SGlFKUaBVLMmgWR0CCA9lg+hXbdX2UKGgGaAloD0MImRBzSdV287+UhpRSlGgVSzJoFkdAggEXVbzK93V9lChoBmgJaA9DCPLR4oxhzvi/lIaUUpRoFUsyaBZHQIH/xigCfYl1fZQoaAZoCWgPQwjgEoB/SlX7v5SGlFKUaBVLMmgWR0CB/rGMGX5WdX2UKGgGaAloD0MIlQuVfy2v8r+UhpRSlGgVSzJoFkdAggg1LzwtrnV9lChoBmgJaA9DCFX7dDxmYPK/lIaUUpRoFUsyaBZHQIIFc1CPZIx1fZQoaAZoCWgPQwisV5HRAcn1v5SGlFKUaBVLMmgWR0CCBCDW9US7dX2UKGgGaAloD0MItW/urx53+b+UhpRSlGgVSzJoFkdAggMMqrilznV9lChoBmgJaA9DCKvpeqLrwgHAlIaUUpRoFUsyaBZHQIIMgcWCVbB1fZQoaAZoCWgPQwjovpzZrhD+v5SGlFKUaBVLMmgWR0CCCb9KmKqGdX2UKGgGaAloD0MIVmKelbSi+r+UhpRSlGgVSzJoFkdAgghsIeHSGHV9lChoBmgJaA9DCC8UsB2MWPa/lIaUUpRoFUsyaBZHQIIHV+CsfaJ1fZQoaAZoCWgPQwhCPujZrHr3v5SGlFKUaBVLMmgWR0CCEKuoxYaHdX2UKGgGaAloD0MIjXxe8dSj97+UhpRSlGgVSzJoFkdAgg3qUeMho3V9lChoBmgJaA9DCOkLIef9P/m/lIaUUpRoFUsyaBZHQIIMl1GLDQ91fZQoaAZoCWgPQwg33h0Zq032v5SGlFKUaBVLMmgWR0CCC4NDtw71dX2UKGgGaAloD0MIBqBRuvSv+b+UhpRSlGgVSzJoFkdAghTYPf8/EHV9lChoBmgJaA9DCBlXXByVW/a/lIaUUpRoFUsyaBZHQIISFpyp71J1fZQoaAZoCWgPQwg89UiD2xr6v5SGlFKUaBVLMmgWR0CCEMP+XJHRdX2UKGgGaAloD0MIDr3Fw3uO/L+UhpRSlGgVSzJoFkdAgg+x4IKMN3V9lChoBmgJaA9DCLZN8bioVva/lIaUUpRoFUsyaBZHQIIZP8VHnU51fZQoaAZoCWgPQwhma32R0Nb0v5SGlFKUaBVLMmgWR0CCFn1nuiN9dX2UKGgGaAloD0MIh01k5gIX/b+UhpRSlGgVSzJoFkdAghUq2SdOI3V9lChoBmgJaA9DCKOQZFbv8Pe/lIaUUpRoFUsyaBZHQIIUFcbBGhF1fZQoaAZoCWgPQwifVWZK66/4v5SGlFKUaBVLMmgWR0CCHZBAOavzdX2UKGgGaAloD0MIXRlUG5wI87+UhpRSlGgVSzJoFkdAghrOkDZDiXV9lChoBmgJaA9DCHqJsUy/xPy/lIaUUpRoFUsyaBZHQIIZe9QGfPJ1fZQoaAZoCWgPQwiI1/ULdkP7v5SGlFKUaBVLMmgWR0CCGGaHbh3rdX2UKGgGaAloD0MIQIhkyLF1+L+UhpRSlGgVSzJoFkdAgiHehwl0HXV9lChoBmgJaA9DCHkFoidlEv6/lIaUUpRoFUsyaBZHQIIfIT9KmKt1fZQoaAZoCWgPQwizJ4HNObj2v5SGlFKUaBVLMmgWR0CCHdKoybhFdX2UKGgGaAloD0MIvqJbr+lB/b+UhpRSlGgVSzJoFkdAghzB0p3HJnV9lChoBmgJaA9DCLJ/ngYMUvS/lIaUUpRoFUsyaBZHQIIqK5Xlr/N1fZQoaAZoCWgPQwhgdHlzuBb2v5SGlFKUaBVLMmgWR0CCJ2wY+B6KdX2UKGgGaAloD0MIWwndJXGW+L+UhpRSlGgVSzJoFkdAgiYeumrKeXV9lChoBmgJaA9DCDoDIy9rIvi/lIaUUpRoFUsyaBZHQIIlFUMoc711fZQoaAZoCWgPQwjjVGthFlr5v5SGlFKUaBVLMmgWR0CCMsHN5dGBdX2UKGgGaAloD0MIFsJqLGFt97+UhpRSlGgVSzJoFkdAgjAC5uqFRHV9lChoBmgJaA9DCKUTCaaa2fa/lIaUUpRoFUsyaBZHQIIuvJcPe551fZQoaAZoCWgPQwh9IeS8/8/4v5SGlFKUaBVLMmgWR0CCLapVCHARdX2UKGgGaAloD0MILH3ogvrW+L+UhpRSlGgVSzJoFkdAgjui+UQkHHV9lChoBmgJaA9DCHCwNzEkZ/a/lIaUUpRoFUsyaBZHQII44593KSx1fZQoaAZoCWgPQwge4bTgRd/2v5SGlFKUaBVLMmgWR0CCN5PsRg7YdX2UKGgGaAloD0MIzo5U3/klAsCUhpRSlGgVSzJoFkdAgjaBHkLhJnV9lChoBmgJaA9DCCeJJeXuM/q/lIaUUpRoFUsyaBZHQIJFF4oqkM11fZQoaAZoCWgPQwh9BtSbUfP4v5SGlFKUaBVLMmgWR0CCQln/1g6VdX2UKGgGaAloD0MIS1ZFuMmo9r+UhpRSlGgVSzJoFkdAgkELHEMspXV9lChoBmgJaA9DCD8e+u5WVvi/lIaUUpRoFUsyaBZHQII/+PcSGrV1fZQoaAZoCWgPQwirJR3lYPb2v5SGlFKUaBVLMmgWR0CCTa0waisXdX2UKGgGaAloD0MInaBNDp+09L+UhpRSlGgVSzJoFkdAgkrzRQaaTnV9lChoBmgJaA9DCIkl5e5zvPi/lIaUUpRoFUsyaBZHQIJJpOzposZ1fZQoaAZoCWgPQwjJWkOpvYj1v5SGlFKUaBVLMmgWR0CCSJRQaaTfdX2UKGgGaAloD0MIvHfUmBBz/L+UhpRSlGgVSzJoFkdAglW9UbT+enV9lChoBmgJaA9DCGHGFKxxtvm/lIaUUpRoFUsyaBZHQIJTAO6NEPV1fZQoaAZoCWgPQwhvg9pv7QT7v5SGlFKUaBVLMmgWR0CCUbIK+i8GdX2UKGgGaAloD0MIFAfQ7/u397+UhpRSlGgVSzJoFkdAglCgbIcR2HV9lChoBmgJaA9DCDRLAtTUsvq/lIaUUpRoFUsyaBZHQIJdUG5c1O11fZQoaAZoCWgPQwhlcf+R6RD2v5SGlFKUaBVLMmgWR0CCWpFwT/Q0dX2UKGgGaAloD0MIAfp9/+aF9r+UhpRSlGgVSzJoFkdAgllCQtBfKXV9lChoBmgJaA9DCMmP+BVr+Pi/lIaUUpRoFUsyaBZHQIJYMIomXw91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 8553, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (800 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.2723922257544473, "std_reward": 0.13655203447391326, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T23:00:57.291519"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cb66824fe1b5f07a3ab258c305d564a4664f17f67fc66a9c70e8736c3c60b06
3
+ size 3056