Technocoloredgeek commited on
Commit
d5c2f29
·
verified ·
1 Parent(s): c5b0153

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:1539
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: How do the models ensure the production of valid, reliable, and
46
+ factually accurate outputs while assessing risks associated with content provenance
47
+ and offensive cyber activities?
48
+ sentences:
49
+ - "Information or Capabilities \nMS-1.1-0 05 Evaluate novel methods and technologies\
50
+ \ for the measurement of GAI-related \nrisks in cluding in content provenance\
51
+ \ , offensive cy ber, and CBRN , while \nmaintaining the models’ ability to produce\
52
+ \ valid, reliable, and factually accurate outputs. Information Integrity ; CBRN\
53
+ \ \nInformation or Capabilities ; \nObscene, Degrading, and/or Abusive Content"
54
+ - Testing. Systems should undergo extensive testing before deployment. This testing
55
+ should follow domain-specific best practices, when available, for ensuring the
56
+ technology will work in its real-world context. Such testing should take into
57
+ account both the specific technology used and the roles of any human operators
58
+ or reviewers who impact system outcomes or effectiveness; testing should include
59
+ both automated systems testing and human-led (manual) testing. Testing conditions
60
+ should mirror as
61
+ - "oping technologies related to a sensitive domain and those collecting, using,\
62
+ \ storing, or sharing sensitive data \nshould, whenever appropriate, regularly\
63
+ \ provide public reports describing: any data security lapses or breaches \nthat\
64
+ \ resulted in sensitive data leaks; the numbe r, type, and outcomes of ethical\
65
+ \ pre-reviews undertaken; a \ndescription of any data sold, shared, or made public,\
66
+ \ and how that data was assessed to determine it did not pres-"
67
+ - source_sentence: How should automated systems handle user data in terms of collection
68
+ and user consent according to the provided context?
69
+ sentences:
70
+ - 'Property Appraisal and Valuation Equity: Closing the Racial Wealth Gap by Addressing
71
+ Mis-valuations for
72
+
73
+ Families and Communities of Color. March 2022. https://pave.hud.gov/sites/pave.hud.gov/files/
74
+
75
+ documents/PAVEActionPlan.pdf
76
+
77
+ 53. U.S. Equal Employment Opportunity Commission. The Americans with Disabilities
78
+ Act and the Use of
79
+
80
+ Software, Algorithms, and Artificial Intelligence to Assess Job Applicants and
81
+ Employees . EEOC-'
82
+ - "defense, substantive or procedural, enforceable at law or in equity by any party\
83
+ \ against the United States, its \ndepartments, agencies, or entities, its officers,\
84
+ \ employees, or agents, or any other person, nor does it constitute a \nwaiver\
85
+ \ of sovereign immunity. \nCopyright Information \nThis document is a work of\
86
+ \ the United States Government and is in the public domain (see 17 U.S.C. §105).\
87
+ \ \n2"
88
+ - "privacy through design choices that ensure such protections are included by default,\
89
+ \ including ensuring that data collection conforms to reasonable expectations\
90
+ \ and that only data strictly necessary for the specific context is collected.\
91
+ \ Designers, developers, and deployers of automated systems should seek your permission\
92
+ \ \nand respect your decisions regarding collection, use, access, transfer, and\
93
+ \ deletion of your data in appropriate"
94
+ - source_sentence: How many participants attended the listening sessions organized
95
+ for members of the public?
96
+ sentences:
97
+ - "37 MS-2.11-0 05 Assess the proportion of synthetic to non -synthetic training\
98
+ \ data and verify \ntraining data is not overly homogenous or GAI-produced to\
99
+ \ mitigate concerns of \nmodel collapse. Harmful Bias and Homogenization \n\
100
+ AI Actor Tasks: AI Deployment, AI Impact Assessment, Affected Individuals and\
101
+ \ Communities, Domain Experts, End -Users, \nOperation and Monitoring, TEVV"
102
+ - "lenders who may be avoiding serving communities of color are conducting targeted\
103
+ \ marketing and advertising.51 \nThis initiative will draw upon strong partnerships\
104
+ \ across federal agencies, including the Consumer Financial \nProtection Bureau\
105
+ \ and prudential regulators. The Action Plan to Advance Property Appraisal and\
106
+ \ Valuation \nEquity includes a commitment from the agencies that oversee mortgage\
107
+ \ lending to include a"
108
+ - 'for members of the public. The listening sessions together drew upwards of 300
109
+ participants. The Science and
110
+
111
+ Technology Policy Institute produced a synopsis of both the RFI submissions and
112
+ the feedback at the listeningsessions.
113
+
114
+ 115
115
+
116
+ 61'
117
+ - source_sentence: Why is it particularly important to monitor the risks of confabulated
118
+ content when integrating Generative AI (GAI) into applications that involve consequential
119
+ decision making?
120
+ sentences:
121
+ - of how and what the technologies are doing. Some panelists suggested that technology
122
+ should be used to help people receive benefits, e.g., by pushing benefits to those
123
+ in need and ensuring automated decision-making systems are only used to provide
124
+ a positive outcome; technology shouldn't be used to take supports away from people
125
+ who need them.
126
+ - "many real -world applications, such as in healthcare, where a confabulated summary\
127
+ \ of patient \ninformation reports could cause doctors to make incorrect diagnoses\
128
+ \ and/or recommend the wrong \ntreatments. Risks of confabulated content may\
129
+ \ be especially important to monitor when integrating GAI \ninto applications\
130
+ \ involving consequential decision making. \nGAI outputs may also include confabulated\
131
+ \ logic or citations that purport to justify or explain the"
132
+ - "settings or in the public domain. \nOrganizations can restrict AI applications\
133
+ \ that cause harm, exceed stated risk tolerances, or that conflict with their tolerances\
134
+ \ or values. Governance tools and protocols that are applied to other types of\
135
+ \ AI systems can be applied to GAI systems. These p lans and actions include:\
136
+ \ \n• Accessibility and reasonable accommodations \n• AI actor credentials and\
137
+ \ qualifications \n• Alignment to organizational values • Auditing and assessment"
138
+ - source_sentence: How does the framework address the concerns related to the rapid
139
+ innovation and changing definitions of AI systems?
140
+ sentences:
141
+ - or inequality. Assessment could include both qualitative and quantitative evaluations
142
+ of the system. This equity assessment should also be considered a core part of
143
+ the goals of the consultation conducted as part of the safety and efficacy review.
144
+ - "deactivate AI systems that demonstrate performance or outcomes inconsistent with\
145
+ \ intended use. \nAction ID Suggested Action GAI Risks \nMG-2.4-001 Establish\
146
+ \ and maintain communication plans to inform AI stakeholders as part of \nthe\
147
+ \ deactivation or disengagement process of a specific GAI system (including for\
148
+ \ open -source models) or context of use, including r easons, workarounds, user\
149
+ \ \naccess removal, alternative processes, contact information, etc. Human -AI\
150
+ \ Configuration"
151
+ - "SECTION TITLE\nApplying The Blueprint for an AI Bill of Rights \nWhile many\
152
+ \ of the concerns addressed in this framework derive from the use of AI, the technical\
153
+ \ \ncapabilities and specific definitions of such systems change with the speed\
154
+ \ of innovation, and the potential \nharms of their use occur even with less technologically\
155
+ \ sophisticated tools. Thus, this framework uses a two-\npart test to determine\
156
+ \ what systems are in scope. This framework applies to (1) automated systems that\
157
+ \ (2)"
158
+ model-index:
159
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
160
+ results:
161
+ - task:
162
+ type: information-retrieval
163
+ name: Information Retrieval
164
+ dataset:
165
+ name: Unknown
166
+ type: unknown
167
+ metrics:
168
+ - type: cosine_accuracy@1
169
+ value: 0.9270833333333334
170
+ name: Cosine Accuracy@1
171
+ - type: cosine_accuracy@3
172
+ value: 0.9947916666666666
173
+ name: Cosine Accuracy@3
174
+ - type: cosine_accuracy@5
175
+ value: 1.0
176
+ name: Cosine Accuracy@5
177
+ - type: cosine_accuracy@10
178
+ value: 1.0
179
+ name: Cosine Accuracy@10
180
+ - type: cosine_precision@1
181
+ value: 0.9270833333333334
182
+ name: Cosine Precision@1
183
+ - type: cosine_precision@3
184
+ value: 0.33159722222222227
185
+ name: Cosine Precision@3
186
+ - type: cosine_precision@5
187
+ value: 0.19999999999999998
188
+ name: Cosine Precision@5
189
+ - type: cosine_precision@10
190
+ value: 0.09999999999999999
191
+ name: Cosine Precision@10
192
+ - type: cosine_recall@1
193
+ value: 0.9270833333333334
194
+ name: Cosine Recall@1
195
+ - type: cosine_recall@3
196
+ value: 0.9947916666666666
197
+ name: Cosine Recall@3
198
+ - type: cosine_recall@5
199
+ value: 1.0
200
+ name: Cosine Recall@5
201
+ - type: cosine_recall@10
202
+ value: 1.0
203
+ name: Cosine Recall@10
204
+ - type: cosine_ndcg@10
205
+ value: 0.969317939271961
206
+ name: Cosine Ndcg@10
207
+ - type: cosine_mrr@10
208
+ value: 0.9587673611111113
209
+ name: Cosine Mrr@10
210
+ - type: cosine_map@100
211
+ value: 0.9587673611111112
212
+ name: Cosine Map@100
213
+ - type: dot_accuracy@1
214
+ value: 0.9270833333333334
215
+ name: Dot Accuracy@1
216
+ - type: dot_accuracy@3
217
+ value: 0.9947916666666666
218
+ name: Dot Accuracy@3
219
+ - type: dot_accuracy@5
220
+ value: 1.0
221
+ name: Dot Accuracy@5
222
+ - type: dot_accuracy@10
223
+ value: 1.0
224
+ name: Dot Accuracy@10
225
+ - type: dot_precision@1
226
+ value: 0.9270833333333334
227
+ name: Dot Precision@1
228
+ - type: dot_precision@3
229
+ value: 0.33159722222222227
230
+ name: Dot Precision@3
231
+ - type: dot_precision@5
232
+ value: 0.19999999999999998
233
+ name: Dot Precision@5
234
+ - type: dot_precision@10
235
+ value: 0.09999999999999999
236
+ name: Dot Precision@10
237
+ - type: dot_recall@1
238
+ value: 0.9270833333333334
239
+ name: Dot Recall@1
240
+ - type: dot_recall@3
241
+ value: 0.9947916666666666
242
+ name: Dot Recall@3
243
+ - type: dot_recall@5
244
+ value: 1.0
245
+ name: Dot Recall@5
246
+ - type: dot_recall@10
247
+ value: 1.0
248
+ name: Dot Recall@10
249
+ - type: dot_ndcg@10
250
+ value: 0.969317939271961
251
+ name: Dot Ndcg@10
252
+ - type: dot_mrr@10
253
+ value: 0.9587673611111113
254
+ name: Dot Mrr@10
255
+ - type: dot_map@100
256
+ value: 0.9587673611111112
257
+ name: Dot Map@100
258
+ ---
259
+
260
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
261
+
262
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
263
+
264
+ ## Model Details
265
+
266
+ ### Model Description
267
+ - **Model Type:** Sentence Transformer
268
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
269
+ - **Maximum Sequence Length:** 512 tokens
270
+ - **Output Dimensionality:** 768 tokens
271
+ - **Similarity Function:** Cosine Similarity
272
+ <!-- - **Training Dataset:** Unknown -->
273
+ <!-- - **Language:** Unknown -->
274
+ <!-- - **License:** Unknown -->
275
+
276
+ ### Model Sources
277
+
278
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
279
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
280
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
281
+
282
+ ### Full Model Architecture
283
+
284
+ ```
285
+ SentenceTransformer(
286
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
287
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
288
+ (2): Normalize()
289
+ )
290
+ ```
291
+
292
+ ## Usage
293
+
294
+ ### Direct Usage (Sentence Transformers)
295
+
296
+ First install the Sentence Transformers library:
297
+
298
+ ```bash
299
+ pip install -U sentence-transformers
300
+ ```
301
+
302
+ Then you can load this model and run inference.
303
+ ```python
304
+ from sentence_transformers import SentenceTransformer
305
+
306
+ # Download from the 🤗 Hub
307
+ model = SentenceTransformer("Technocoloredgeek/midterm-finetuned-embedding")
308
+ # Run inference
309
+ sentences = [
310
+ 'How does the framework address the concerns related to the rapid innovation and changing definitions of AI systems?',
311
+ 'SECTION TITLE\nApplying The Blueprint for an AI Bill of Rights \nWhile many of the concerns addressed in this framework derive from the use of AI, the technical \ncapabilities and specific definitions of such systems change with the speed of innovation, and the potential \nharms of their use occur even with less technologically sophisticated tools. Thus, this framework uses a two-\npart test to determine what systems are in scope. This framework applies to (1) automated systems that (2)',
312
+ 'or inequality. Assessment could include both qualitative and quantitative evaluations of the system. This equity assessment should also be considered a core part of the goals of the consultation conducted as part of the safety and efficacy review.',
313
+ ]
314
+ embeddings = model.encode(sentences)
315
+ print(embeddings.shape)
316
+ # [3, 768]
317
+
318
+ # Get the similarity scores for the embeddings
319
+ similarities = model.similarity(embeddings, embeddings)
320
+ print(similarities.shape)
321
+ # [3, 3]
322
+ ```
323
+
324
+ <!--
325
+ ### Direct Usage (Transformers)
326
+
327
+ <details><summary>Click to see the direct usage in Transformers</summary>
328
+
329
+ </details>
330
+ -->
331
+
332
+ <!--
333
+ ### Downstream Usage (Sentence Transformers)
334
+
335
+ You can finetune this model on your own dataset.
336
+
337
+ <details><summary>Click to expand</summary>
338
+
339
+ </details>
340
+ -->
341
+
342
+ <!--
343
+ ### Out-of-Scope Use
344
+
345
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
346
+ -->
347
+
348
+ ## Evaluation
349
+
350
+ ### Metrics
351
+
352
+ #### Information Retrieval
353
+
354
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
355
+
356
+ | Metric | Value |
357
+ |:--------------------|:-----------|
358
+ | cosine_accuracy@1 | 0.9271 |
359
+ | cosine_accuracy@3 | 0.9948 |
360
+ | cosine_accuracy@5 | 1.0 |
361
+ | cosine_accuracy@10 | 1.0 |
362
+ | cosine_precision@1 | 0.9271 |
363
+ | cosine_precision@3 | 0.3316 |
364
+ | cosine_precision@5 | 0.2 |
365
+ | cosine_precision@10 | 0.1 |
366
+ | cosine_recall@1 | 0.9271 |
367
+ | cosine_recall@3 | 0.9948 |
368
+ | cosine_recall@5 | 1.0 |
369
+ | cosine_recall@10 | 1.0 |
370
+ | cosine_ndcg@10 | 0.9693 |
371
+ | cosine_mrr@10 | 0.9588 |
372
+ | **cosine_map@100** | **0.9588** |
373
+ | dot_accuracy@1 | 0.9271 |
374
+ | dot_accuracy@3 | 0.9948 |
375
+ | dot_accuracy@5 | 1.0 |
376
+ | dot_accuracy@10 | 1.0 |
377
+ | dot_precision@1 | 0.9271 |
378
+ | dot_precision@3 | 0.3316 |
379
+ | dot_precision@5 | 0.2 |
380
+ | dot_precision@10 | 0.1 |
381
+ | dot_recall@1 | 0.9271 |
382
+ | dot_recall@3 | 0.9948 |
383
+ | dot_recall@5 | 1.0 |
384
+ | dot_recall@10 | 1.0 |
385
+ | dot_ndcg@10 | 0.9693 |
386
+ | dot_mrr@10 | 0.9588 |
387
+ | dot_map@100 | 0.9588 |
388
+
389
+ <!--
390
+ ## Bias, Risks and Limitations
391
+
392
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
393
+ -->
394
+
395
+ <!--
396
+ ### Recommendations
397
+
398
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
399
+ -->
400
+
401
+ ## Training Details
402
+
403
+ ### Training Dataset
404
+
405
+ #### Unnamed Dataset
406
+
407
+
408
+ * Size: 1,539 training samples
409
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
410
+ * Approximate statistics based on the first 1000 samples:
411
+ | | sentence_0 | sentence_1 |
412
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
413
+ | type | string | string |
414
+ | details | <ul><li>min: 12 tokens</li><li>mean: 23.91 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 84.9 tokens</li><li>max: 335 tokens</li></ul> |
415
+ * Samples:
416
+ | sentence_0 | sentence_1 |
417
+ |:-------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
418
+ | <code>What are confabulations in the context of generative AI outputs, and how do they arise from the design of generative models?</code> | <code>Confabulations can occur across GAI outputs and contexts .9,10 Confabulations are a natural result of the <br>way generative models are designed : they generate outputs that approximate the statistical distribution <br>of their training data ; for example, LLMs predict the next token or word in a sentence or phrase . While <br>such statistical prediction can produce factual ly accurate and consistent outputs , it can also produce</code> |
419
+ | <code>What roles do Rashida Richardson and Karen Kornbluh hold in relation to technology and democracy as mentioned in the context?</code> | <code>products, advanced platforms and services, “Internet of Things” (IoT) devices, and smart city products and services. <br>Welcome :<br>•Rashida Richardson, Senior Policy Advisor for Data and Democracy, White House Office of Science andTechnology Policy<br>•Karen Kornbluh, Senior Fellow and Director of the Digital Innovation and Democracy Initiative, GermanMarshall Fund<br>Moderator :</code> |
420
+ | <code>What are some best practices that entities should follow to ensure privacy and security in automated systems?</code> | <code>Privacy-preserving security. Entities creating, using, or governing automated systems should follow privacy and security best practices designed to ensure data and metadata do not leak beyond the specific consented use case. Best practices could include using privacy-enhancing cryptography or other types of privacy-enhancing technologies or fine-grained permissions and access control mechanisms, along with conventional system security protocols. <br>33</code> |
421
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
422
+ ```json
423
+ {
424
+ "loss": "MultipleNegativesRankingLoss",
425
+ "matryoshka_dims": [
426
+ 768,
427
+ 512,
428
+ 256,
429
+ 128,
430
+ 64
431
+ ],
432
+ "matryoshka_weights": [
433
+ 1,
434
+ 1,
435
+ 1,
436
+ 1,
437
+ 1
438
+ ],
439
+ "n_dims_per_step": -1
440
+ }
441
+ ```
442
+
443
+ ### Training Hyperparameters
444
+ #### Non-Default Hyperparameters
445
+
446
+ - `eval_strategy`: steps
447
+ - `per_device_train_batch_size`: 20
448
+ - `per_device_eval_batch_size`: 20
449
+ - `num_train_epochs`: 5
450
+ - `multi_dataset_batch_sampler`: round_robin
451
+
452
+ #### All Hyperparameters
453
+ <details><summary>Click to expand</summary>
454
+
455
+ - `overwrite_output_dir`: False
456
+ - `do_predict`: False
457
+ - `eval_strategy`: steps
458
+ - `prediction_loss_only`: True
459
+ - `per_device_train_batch_size`: 20
460
+ - `per_device_eval_batch_size`: 20
461
+ - `per_gpu_train_batch_size`: None
462
+ - `per_gpu_eval_batch_size`: None
463
+ - `gradient_accumulation_steps`: 1
464
+ - `eval_accumulation_steps`: None
465
+ - `torch_empty_cache_steps`: None
466
+ - `learning_rate`: 5e-05
467
+ - `weight_decay`: 0.0
468
+ - `adam_beta1`: 0.9
469
+ - `adam_beta2`: 0.999
470
+ - `adam_epsilon`: 1e-08
471
+ - `max_grad_norm`: 1
472
+ - `num_train_epochs`: 5
473
+ - `max_steps`: -1
474
+ - `lr_scheduler_type`: linear
475
+ - `lr_scheduler_kwargs`: {}
476
+ - `warmup_ratio`: 0.0
477
+ - `warmup_steps`: 0
478
+ - `log_level`: passive
479
+ - `log_level_replica`: warning
480
+ - `log_on_each_node`: True
481
+ - `logging_nan_inf_filter`: True
482
+ - `save_safetensors`: True
483
+ - `save_on_each_node`: False
484
+ - `save_only_model`: False
485
+ - `restore_callback_states_from_checkpoint`: False
486
+ - `no_cuda`: False
487
+ - `use_cpu`: False
488
+ - `use_mps_device`: False
489
+ - `seed`: 42
490
+ - `data_seed`: None
491
+ - `jit_mode_eval`: False
492
+ - `use_ipex`: False
493
+ - `bf16`: False
494
+ - `fp16`: False
495
+ - `fp16_opt_level`: O1
496
+ - `half_precision_backend`: auto
497
+ - `bf16_full_eval`: False
498
+ - `fp16_full_eval`: False
499
+ - `tf32`: None
500
+ - `local_rank`: 0
501
+ - `ddp_backend`: None
502
+ - `tpu_num_cores`: None
503
+ - `tpu_metrics_debug`: False
504
+ - `debug`: []
505
+ - `dataloader_drop_last`: False
506
+ - `dataloader_num_workers`: 0
507
+ - `dataloader_prefetch_factor`: None
508
+ - `past_index`: -1
509
+ - `disable_tqdm`: False
510
+ - `remove_unused_columns`: True
511
+ - `label_names`: None
512
+ - `load_best_model_at_end`: False
513
+ - `ignore_data_skip`: False
514
+ - `fsdp`: []
515
+ - `fsdp_min_num_params`: 0
516
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
517
+ - `fsdp_transformer_layer_cls_to_wrap`: None
518
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
519
+ - `deepspeed`: None
520
+ - `label_smoothing_factor`: 0.0
521
+ - `optim`: adamw_torch
522
+ - `optim_args`: None
523
+ - `adafactor`: False
524
+ - `group_by_length`: False
525
+ - `length_column_name`: length
526
+ - `ddp_find_unused_parameters`: None
527
+ - `ddp_bucket_cap_mb`: None
528
+ - `ddp_broadcast_buffers`: False
529
+ - `dataloader_pin_memory`: True
530
+ - `dataloader_persistent_workers`: False
531
+ - `skip_memory_metrics`: True
532
+ - `use_legacy_prediction_loop`: False
533
+ - `push_to_hub`: False
534
+ - `resume_from_checkpoint`: None
535
+ - `hub_model_id`: None
536
+ - `hub_strategy`: every_save
537
+ - `hub_private_repo`: False
538
+ - `hub_always_push`: False
539
+ - `gradient_checkpointing`: False
540
+ - `gradient_checkpointing_kwargs`: None
541
+ - `include_inputs_for_metrics`: False
542
+ - `eval_do_concat_batches`: True
543
+ - `fp16_backend`: auto
544
+ - `push_to_hub_model_id`: None
545
+ - `push_to_hub_organization`: None
546
+ - `mp_parameters`:
547
+ - `auto_find_batch_size`: False
548
+ - `full_determinism`: False
549
+ - `torchdynamo`: None
550
+ - `ray_scope`: last
551
+ - `ddp_timeout`: 1800
552
+ - `torch_compile`: False
553
+ - `torch_compile_backend`: None
554
+ - `torch_compile_mode`: None
555
+ - `dispatch_batches`: None
556
+ - `split_batches`: None
557
+ - `include_tokens_per_second`: False
558
+ - `include_num_input_tokens_seen`: False
559
+ - `neftune_noise_alpha`: None
560
+ - `optim_target_modules`: None
561
+ - `batch_eval_metrics`: False
562
+ - `eval_on_start`: False
563
+ - `eval_use_gather_object`: False
564
+ - `batch_sampler`: batch_sampler
565
+ - `multi_dataset_batch_sampler`: round_robin
566
+
567
+ </details>
568
+
569
+ ### Training Logs
570
+ | Epoch | Step | cosine_map@100 |
571
+ |:------:|:----:|:--------------:|
572
+ | 0.6494 | 50 | 0.9436 |
573
+ | 1.0 | 77 | 0.9501 |
574
+ | 1.2987 | 100 | 0.9440 |
575
+ | 1.9481 | 150 | 0.9523 |
576
+ | 2.0 | 154 | 0.9488 |
577
+ | 2.5974 | 200 | 0.9549 |
578
+ | 3.0 | 231 | 0.9536 |
579
+ | 3.2468 | 250 | 0.9562 |
580
+ | 3.8961 | 300 | 0.9562 |
581
+ | 4.0 | 308 | 0.9562 |
582
+ | 4.5455 | 350 | 0.9562 |
583
+ | 5.0 | 385 | 0.9588 |
584
+
585
+
586
+ ### Framework Versions
587
+ - Python: 3.10.12
588
+ - Sentence Transformers: 3.1.1
589
+ - Transformers: 4.44.2
590
+ - PyTorch: 2.4.1+cu121
591
+ - Accelerate: 0.34.2
592
+ - Datasets: 3.0.0
593
+ - Tokenizers: 0.19.1
594
+
595
+ ## Citation
596
+
597
+ ### BibTeX
598
+
599
+ #### Sentence Transformers
600
+ ```bibtex
601
+ @inproceedings{reimers-2019-sentence-bert,
602
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
603
+ author = "Reimers, Nils and Gurevych, Iryna",
604
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
605
+ month = "11",
606
+ year = "2019",
607
+ publisher = "Association for Computational Linguistics",
608
+ url = "https://arxiv.org/abs/1908.10084",
609
+ }
610
+ ```
611
+
612
+ #### MatryoshkaLoss
613
+ ```bibtex
614
+ @misc{kusupati2024matryoshka,
615
+ title={Matryoshka Representation Learning},
616
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
617
+ year={2024},
618
+ eprint={2205.13147},
619
+ archivePrefix={arXiv},
620
+ primaryClass={cs.LG}
621
+ }
622
+ ```
623
+
624
+ #### MultipleNegativesRankingLoss
625
+ ```bibtex
626
+ @misc{henderson2017efficient,
627
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
628
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
629
+ year={2017},
630
+ eprint={1705.00652},
631
+ archivePrefix={arXiv},
632
+ primaryClass={cs.CL}
633
+ }
634
+ ```
635
+
636
+ <!--
637
+ ## Glossary
638
+
639
+ *Clearly define terms in order to be accessible across audiences.*
640
+ -->
641
+
642
+ <!--
643
+ ## Model Card Authors
644
+
645
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
646
+ -->
647
+
648
+ <!--
649
+ ## Model Card Contact
650
+
651
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
652
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adbc13a10e1d4375610ea91e67e9f49770406f02fd0c45cfbd81f0413e871c05
3
+ size 435588776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff