Text Generation
Transformers
Safetensors
gemma
unsloth
conversational
text-generation-inference
Inference Endpoints
SaiTejaMummadi commited on
Commit
898a38d
·
verified ·
1 Parent(s): a242937

Updated Readme.md

Browse files
Files changed (1) hide show
  1. README.md +87 -134
README.md CHANGED
@@ -2,12 +2,20 @@
2
  library_name: transformers
3
  tags:
4
  - unsloth
 
 
 
 
 
5
  ---
6
 
7
  # Model Card for Model ID
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
 
10
 
 
 
11
 
12
 
13
  ## Model Details
@@ -18,49 +26,25 @@ tags:
18
 
19
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
 
37
  ## Uses
38
 
39
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
 
47
  ### Downstream Use [optional]
48
 
49
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
 
59
  ## Bias, Risks, and Limitations
60
 
61
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
 
65
  ### Recommendations
66
 
@@ -72,131 +56,100 @@ Users (both direct and downstream) should be made aware of the risks, biases and
72
 
73
  Use the code below to get started with the model.
74
 
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
 
108
- ### Testing Data, Factors & Metrics
 
109
 
110
- #### Testing Data
 
111
 
112
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
 
113
 
114
- [More Information Needed]
115
 
116
- #### Factors
117
 
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
 
 
 
 
 
 
 
119
 
120
- [More Information Needed]
 
 
121
 
122
- #### Metrics
123
 
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
- [More Information Needed]
127
 
128
- ### Results
129
 
130
- [More Information Needed]
131
 
132
- #### Summary
 
 
 
 
 
 
 
 
133
 
 
 
 
134
 
135
 
136
- ## Model Examination [optional]
137
 
138
- <!-- Relevant interpretability work for the model goes here -->
 
 
139
 
140
- [More Information Needed]
 
 
 
141
 
142
- ## Environmental Impact
 
 
 
143
 
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
 
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
 
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
 
194
  ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
201
-
202
-
 
2
  library_name: transformers
3
  tags:
4
  - unsloth
5
+ datasets:
6
+ - Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized
7
+ - >-
8
+ Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized
9
+ pipeline_tag: text-generation
10
  ---
11
 
12
  # Model Card for Model ID
13
 
14
  <!-- Provide a quick summary of what the model is/does. -->
15
+ Gemma 2B Model Finetuned on two Telugu Instruct Datasets:
16
 
17
+ 1. Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized
18
+ 2. Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized
19
 
20
 
21
  ## Model Details
 
26
 
27
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
28
 
29
+ - **Developed by:** Sai Teja Mummadi
30
+ - **Language(s) (NLP):** English, Telugu (Original Script and Transliterated(Romanized))
31
+ - **Finetuned from model:** google/gemma-2b
 
 
 
 
32
 
 
 
 
 
 
 
 
33
 
34
  ## Uses
35
 
36
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
+ Text Generation, Telugu Chatbot, Telugu Text Generation
 
 
 
 
 
38
 
39
  ### Downstream Use [optional]
40
 
41
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
42
+ Telugu Text Summarization, Further Finetuning on Telugu Datasets
 
 
 
 
 
 
 
43
 
44
  ## Bias, Risks, and Limitations
45
 
46
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
47
+ Model is still under development, might need further finetuning on other datasets
 
48
 
49
  ### Recommendations
50
 
 
56
 
57
  Use the code below to get started with the model.
58
 
59
+ ```
60
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
+ ### Instruction:
63
+ {}
64
 
65
+ ### Input:
66
+ {}
67
 
68
+ ### Response:
69
+ {}"""
70
+ ```
71
+ ```
72
+ import torch
73
+ from transformers import AutoTokenizer, AutoModelForCausalLM
74
 
75
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
76
 
77
+ model_name = "TeluguHouseCollective/Gemma-2B-Telugu_Instruct_Finetuned"
78
 
79
+ tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right")
80
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
81
+ ```
82
+ ```
83
+ inputs = tokenizer(
84
+ [
85
+ alpaca_prompt.format(
86
+ "fibonacci series rayadaniki python program ivvu", # instruction
87
+ "", # input
88
+ "", # output - leave this blank for generation!
89
+ )
90
+ ], return_tensors = "pt").to("cuda")
91
 
92
+ outputs = model.generate(**inputs, max_new_tokens = 256, use_cache = True)
93
+ tokenizer.batch_decode(outputs)
94
+ ```
95
 
96
+ Model Output was as following:
97
 
98
+ ```
99
+ Response:\nfibonnaci rayadaniki python program ikkada vundi:\n\n\'\'\'\n
100
+ def fibonacci(n):\n """\n fibonacci series rayadaniki python program.\n """\n
101
+ a = 0\n b = 1\n series = [a, b]\n
102
+ for i in range(2, n + 1):\n
103
+ series.append(a + b)\n
104
+ a, b = b, a + b\n
105
+ return series\n\n#
106
+ fibonacci series rayadaniki 10 vibhinna sankhyalanu rayandi\n
107
+ series = fibonacci(10)\nprint(series)\n\'\'\'\n\n
108
+ e program fibonacci series rayadaniki python language upayogistamdi
109
+ mariyu fibonacci(n) function upayoginchi fibonacci(n) sankhyanu
110
+ rayadaniki fibonacci(n) function upayogistamdi.
111
+ fibonacci(n) function yokka prarambha viluvanu 0 mariyu 1 set cheyadam dwara prarambhamavuthundi,
112
+ mariyu idi fibonacci(n) yokka prarambha viluvanu 0 mariyu 1 nundi n nundi 1 nundi 0 varaku prarambhama
113
 
114
+ ```
115
 
116
+ Another input in telugu
117
 
 
118
 
119
+ ```
120
+ inputs = tokenizer(
121
+ [
122
+ alpaca_prompt.format(
123
+ "ఆరోగ్యంగా ఉండాలి అంటే ఎం చేయాలి?", # instruction
124
+ "", # input
125
+ "", # output - leave this blank for generation!
126
+ )
127
+ ], return_tensors = "pt").to("cuda")
128
 
129
+ outputs = model.generate(**inputs, max_new_tokens = 256, use_cache = True)
130
+ tokenizer.batch_decode(outputs)
131
+ ```
132
 
133
 
134
+ Model Output was as following:
135
 
136
+ ```
137
+ ### Response:
138
+ oka nirdishta anubhavanni batti, miru aaharam mariyu poshanalapai drishti pettavachu. kani, oka nirdishta anubhavanni batti, miru aaharam mariyu poshanalapai drishti pettavachu.
139
 
140
+ meeru aaharam mariyu poshanalapai drishti pettavachchu,
141
+ endukante idi mee aarogyanni meruguparachadamla sahayapaduthundi.
142
+ meeru aaharam mariyu poshanalapai drishti pettavachchu, endukante idi mee sarirak srama,
143
+ nidra mariyu manasika aarogyanni meruguparachadamla sahayapaduthundi.
144
 
145
+ meeru aaharam mariyu poshanalapai drishti pettavachchu,
146
+ endukante idi mee sarirak srama, nidra mariyu manasika aarogyanni meruguparachadamla sahayapaduthundi.
147
+ meeru aaharam mariyu poshanalapai drishti pettavachchu, endukante idi mee sarirak srama,
148
+ nidra mariyu manasika aarogyanni meruguparachad
149
 
 
150
 
151
+ ```
152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
  ## Model Card Authors [optional]
155
+ Sai Teja Mummadi