Temur commited on
Commit
e5dec27
·
1 Parent(s): 0324b4a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -1
README.md CHANGED
@@ -25,4 +25,104 @@ model-index:
25
  - name: Test WER
26
  type: wer
27
  value: {wer_result_on_test} #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
28
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  - name: Test WER
26
  type: wer
27
  value: {wer_result_on_test} #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
28
+ ---
29
+
30
+ # Wav2Vec2-Large-XLSR-53-{language} #TODO: replace language with your {language}, *e.g.* French
31
+
32
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
33
+ When using this model, make sure that your speech input is sampled at 16kHz.
34
+
35
+ ## Usage
36
+
37
+ The model can be used directly (without a language model) as follows:
38
+
39
+ ```python
40
+ import torch
41
+ import torchaudio
42
+ from datasets import load_dataset
43
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
44
+
45
+ test_dataset = load_dataset("common_voice", "ka", split="test[:2%]")
46
+
47
+ processor = Wav2Vec2Processor.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
48
+ model = Wav2Vec2ForCTC.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
49
+
50
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
+
52
+ # Preprocessing the datasets.
53
+ # We need to read the aduio files as arrays
54
+ def speech_file_to_array_fn(batch):
55
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ return batch
58
+
59
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
60
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
+
62
+ with torch.no_grad():
63
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
+
65
+ predicted_ids = torch.argmax(logits, dim=-1)
66
+
67
+ print("Prediction:", processor.batch_decode(predicted_ids))
68
+ print("Reference:", test_dataset["sentence"][:2])
69
+ ```
70
+
71
+
72
+ ## Evaluation
73
+
74
+ The model can be evaluated as follows on the Georgian test data of Common Voice.
75
+
76
+
77
+ ```python
78
+ import torch
79
+ import torchaudio
80
+ from datasets import load_dataset, load_metric
81
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
82
+ import re
83
+
84
+ test_dataset = load_dataset("common_voice", "ka", split="test")
85
+ wer = load_metric("wer")
86
+
87
+ processor = Wav2Vec2Processor.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
88
+ model = Wav2Vec2ForCTC.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
89
+ model.to("cuda")
90
+
91
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
92
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
+
94
+ # Preprocessing the datasets.
95
+ # We need to read the aduio files as arrays
96
+ def speech_file_to_array_fn(batch):
97
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ return batch
101
+
102
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
103
+
104
+ # Preprocessing the datasets.
105
+ # We need to read the aduio files as arrays
106
+ def evaluate(batch):
107
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
+
109
+ with torch.no_grad():
110
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
+
112
+ pred_ids = torch.argmax(logits, dim=-1)
113
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ return batch
115
+
116
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
+
118
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
119
+ ```
120
+
121
+ **Test Result**: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.
122
+
123
+
124
+ ## Training
125
+
126
+ The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training.
127
+
128
+ The script used for training can be found [here](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/FINE_TUNE_XLSR_WAV2VEC2.md)