Adapter commited on
Commit
909a397
·
1 Parent(s): 2bed3e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -68,12 +68,14 @@ Let's have a look at a simple example using the [Canny Adapter](https://huggingf
68
  ```py
69
  from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
70
  from diffusers.utils import load_image, make_image_grid
71
- from controlnet_aux.midas import MidasDetector
72
  import torch
 
 
73
 
74
  # load adapter
75
  adapter = T2IAdapter.from_pretrained(
76
- "TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, varient="fp16"
77
  ).to("cuda")
78
 
79
  # load euler_a scheduler
@@ -85,24 +87,22 @@ pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
85
  ).to("cuda")
86
  pipe.enable_xformers_memory_efficient_attention()
87
 
88
- midas_depth = MidasDetector.from_pretrained(
89
- "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
90
- ).to("cuda")
91
  ```
92
 
93
  - Condition Image
94
  ```py
95
- url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_mid.jpg"
96
  image = load_image(url)
97
- image = midas_depth(
98
- image, detect_resolution=512, image_resolution=1024
99
- )
100
  ```
101
- <a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_mid.png"><img width="480" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_mid.png"/></a>
102
 
103
  - Generation
104
  ```py
105
- prompt = "A photo of a room, 4k photo, highly detailed"
106
  negative_prompt = "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"
107
 
108
  gen_images = pipe(
@@ -113,9 +113,9 @@ gen_images = pipe(
113
  adapter_conditioning_scale=1,
114
  guidance_scale=7.5,
115
  ).images[0]
116
- gen_images.save('out_mid.png')
117
  ```
118
- <a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_mid.png"><img width="480" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_mid.png"/></a>
119
 
120
  ### Training
121
 
 
68
  ```py
69
  from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
70
  from diffusers.utils import load_image, make_image_grid
71
+ from controlnet_aux import OpenposeDetector
72
  import torch
73
+ import numpy as np
74
+ from PIL import Image
75
 
76
  # load adapter
77
  adapter = T2IAdapter.from_pretrained(
78
+ "TencentARC/t2i-adapter-openpose-sdxl-1.0", torch_dtype=torch.float16
79
  ).to("cuda")
80
 
81
  # load euler_a scheduler
 
87
  ).to("cuda")
88
  pipe.enable_xformers_memory_efficient_attention()
89
 
90
+ open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
 
 
91
  ```
92
 
93
  - Condition Image
94
  ```py
95
+ url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/people.jpg"
96
  image = load_image(url)
97
+ image = open_pose(image, detect_resolution=512, image_resolution=1024)
98
+ image = np.array(image)[:, :, ::-1]
99
+ image = Image.fromarray(np.uint8(image))
100
  ```
101
+ <a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/openpose.png"><img width="480" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/openpose.png"/></a>
102
 
103
  - Generation
104
  ```py
105
+ prompt = "A couple, 4k photo, highly detailed"
106
  negative_prompt = "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"
107
 
108
  gen_images = pipe(
 
113
  adapter_conditioning_scale=1,
114
  guidance_scale=7.5,
115
  ).images[0]
116
+ gen_images.save('out_pose.png')
117
  ```
118
+ <a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/res_pose.png"><img width="480" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/res_pose.png"/></a>
119
 
120
  ### Training
121