TencentGameMate
commited on
Commit
·
9caa7f5
1
Parent(s):
1496734
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,60 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
This model does not have a tokenizer as it was pretrained on audio alone.
|
6 |
+
In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data.
|
7 |
+
|
8 |
+
python package:
|
9 |
+
transformers==4.16.2
|
10 |
+
|
11 |
+
```python
|
12 |
+
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import soundfile as sf
|
17 |
+
from fairseq import checkpoint_utils
|
18 |
+
|
19 |
+
from transformers import (
|
20 |
+
Wav2Vec2FeatureExtractor,
|
21 |
+
Wav2Vec2ForPreTraining,
|
22 |
+
Wav2Vec2Model,
|
23 |
+
)
|
24 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices
|
25 |
+
|
26 |
+
model_path=""
|
27 |
+
wav_path=""
|
28 |
+
mask_prob=0.0
|
29 |
+
mask_length=10
|
30 |
+
|
31 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_path)
|
32 |
+
model = Wav2Vec2Model.from_pretrained(model_path)
|
33 |
+
|
34 |
+
# for pretrain: Wav2Vec2ForPreTraining
|
35 |
+
# model = Wav2Vec2ForPreTraining.from_pretrained(model_path)
|
36 |
+
|
37 |
+
model = model.to(device)
|
38 |
+
model = model.half()
|
39 |
+
model.eval()
|
40 |
+
|
41 |
+
wav, sr = sf.read(wav_path)
|
42 |
+
input_values = feature_extractor(wav, return_tensors="pt").input_values
|
43 |
+
input_values = input_values.half()
|
44 |
+
input_values = input_values.to(device)
|
45 |
+
|
46 |
+
# for Wav2Vec2ForPreTraining
|
47 |
+
# batch_size, raw_sequence_length = input_values.shape
|
48 |
+
# sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length)
|
49 |
+
# mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.0, mask_length=2)
|
50 |
+
# mask_time_indices = torch.tensor(mask_time_indices, device=input_values.device, dtype=torch.long)
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model(input_values)
|
54 |
+
last_hidden_states = outputs.last_hidden_states
|
55 |
+
|
56 |
+
# for Wav2Vec2ForPreTraining
|
57 |
+
# outputs = model(input_values, mask_time_indices=mask_time_indices, output_hidden_states=True)
|
58 |
+
# last_hidden_states = outputs.hidden_states[-1]
|
59 |
+
|
60 |
+
```
|