File size: 2,538 Bytes
3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a 3967dc6 ed9687a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: transformers
tags:
- bert
- berturk
language:
- tr
pipeline_tag: text-classification
---
# Model Card for Model ID
Turkish news classifier.
### Model Description
11 classes are present:
'turkiye': 0, 'ekonomi': 1, 'dunya': 2, 'spor': 3, 'magazin': 4, 'guncel': 5, 'genel': 6, 'siyaset': 7, 'saglik': 8, 'kultur-sanat': 9, 'teknoloji': 10, 'yasam': 11
The model is a finetuned bert-base-multilingual-uncased model.
The model is not originally a classifier model, so classifier weights were trained completely using the turkish dataset. 🤗
Eval loss: train_loss': 0.8327703781731708
Train loss:0.8896290063858032
Eval train split: 0.2/0.8
- **Developed by:** [Ezel Bayraktar]
- **Model type:** [Classifier]
- **Language(s) (NLP):** [Turkish]
- **License:** [MIT License]
- **Finetuned from model [optional]:** [bert-base-multilingual-uncased ]
## How to Get Started with the Model
Use the code below to get started with the model.
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_name = "TerminatorPower/bert-news-classif-turkish"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()
reverse_label_mapping = {
0: "label_0",
1: "label_1",
2: "label_2",
3: "label_3",
4: "label_4",
5: "label_5",
6: "label_6",
7: "label_7",
8: "label_8",
9: "label_9",
10: "label_10",
11: "label_11",
12: "siyaset" # Example: Map index 12 back to "siyaset"
}
def predict(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
inputs = {key: value.to("cuda" if torch.cuda.is_available() else "cpu") for key, value in inputs.items()}
model.to(inputs["input_ids"].device)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.argmax(outputs.logits, dim=1)
predicted_label = reverse_label_mapping[predictions.item()]
return predicted_label
if __name__ == "__main__":
text = "Some example news text"
print(f"Predicted label: {predict(text)}")
## Training Details
I used rtx 3060 12gb card to tain the training took 245 minutes in total
learning_rate=5e-5,
per_device_train_batch_size=20,
per_device_eval_batch_size=20,
num_train_epochs=7,
### Training Data
I used the kemik 42bin haber data set which you can access from this link
http://www.kemik.yildiz.edu.tr/veri_kumelerimiz.html
## Model Card Contact
[email protected] |