Thamer Smadi commited on
Commit
66b50ba
·
1 Parent(s): feafc36

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -185
README.md CHANGED
@@ -1,206 +1,77 @@
1
  ---
2
- datasets:
3
- - Falah/Alzheimer_MRI
4
- language:
5
- - en
6
  metrics:
7
  - accuracy
8
- library_name: transformers
9
- pipeline_tag: image-classification
10
- license: apache-2.0
11
  ---
12
- # Model Card for Model ID
13
-
14
- <!-- Provide a quick summary of what the model is/does. -->
15
-
16
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
17
-
18
- ## Model Details
19
-
20
- ### Model Description
21
-
22
- <!-- Provide a longer summary of what this model is. -->
23
-
24
-
25
-
26
- - **Developed by:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Data Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
 
176
- ## Citation [optional]
 
177
 
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
 
180
- **BibTeX:**
 
 
 
181
 
182
- [More Information Needed]
183
 
184
- **APA:**
185
 
186
- [More Information Needed]
187
 
188
- ## Glossary [optional]
189
 
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
 
192
- [More Information Needed]
193
 
194
- ## More Information [optional]
195
 
196
- [More Information Needed]
197
 
198
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
 
 
 
199
 
200
- [More Information Needed]
201
 
202
- ## Model Card Contact
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
 
204
- [More Information Needed]
205
 
 
206
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: microsoft/resnet-34
4
+ tags:
5
+ - generated_from_trainer
6
  metrics:
7
  - accuracy
8
+ model-index:
9
+ - name: resnet-fine_tuned
10
+ results: []
11
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
 
16
+ # resnet-fine_tuned
17
 
18
+ This model is a fine-tuned version of [microsoft/resnet-34](https://huggingface.co/microsoft/resnet-34) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1983
21
+ - Accuracy: 0.9219
22
 
23
+ ## Model description
24
 
25
+ More information needed
26
 
27
+ ## Intended uses & limitations
28
 
29
+ More information needed
30
 
31
+ ## Training and evaluation data
32
 
33
+ More information needed
34
 
35
+ ## Training procedure
36
 
37
+ ### Training hyperparameters
38
 
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0002
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 15
50
 
51
+ ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 0.9041 | 1.0 | 80 | 0.9659 | 0.5352 |
56
+ | 0.8743 | 2.0 | 160 | 0.9348 | 0.5797 |
57
+ | 0.7723 | 3.0 | 240 | 0.7793 | 0.6594 |
58
+ | 0.6864 | 4.0 | 320 | 0.6799 | 0.7031 |
59
+ | 0.5347 | 5.0 | 400 | 0.5596 | 0.7703 |
60
+ | 0.4282 | 6.0 | 480 | 0.5078 | 0.7766 |
61
+ | 0.4315 | 7.0 | 560 | 0.5455 | 0.7680 |
62
+ | 0.3747 | 8.0 | 640 | 0.4203 | 0.8266 |
63
+ | 0.2977 | 9.0 | 720 | 0.3926 | 0.8469 |
64
+ | 0.2252 | 10.0 | 800 | 0.3024 | 0.8742 |
65
+ | 0.2675 | 11.0 | 880 | 0.2731 | 0.8906 |
66
+ | 0.2136 | 12.0 | 960 | 0.3045 | 0.875 |
67
+ | 0.1998 | 13.0 | 1040 | 0.2370 | 0.9 |
68
+ | 0.2406 | 14.0 | 1120 | 0.2387 | 0.9086 |
69
+ | 0.1873 | 15.0 | 1200 | 0.1983 | 0.9219 |
70
 
 
71
 
72
+ ### Framework versions
73
 
74
+ - Transformers 4.31.0
75
+ - Pytorch 2.0.1+cpu
76
+ - Datasets 2.13.1
77
+ - Tokenizers 0.13.3