TheBloke commited on
Commit
5621ada
·
1 Parent(s): deeb2f8

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +452 -0
README.md ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: SanjiWatsuki/Lelantos-7B
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ model-index:
8
+ - name: Lelantos-7B
9
+ results: []
10
+ model_creator: Sanji Watsuki
11
+ model_name: Lelantos 7B
12
+ model_type: mistral
13
+ prompt_template: '<|im_start|>system
14
+
15
+ {system_message}<|im_end|>
16
+
17
+ <|im_start|>user
18
+
19
+ {prompt}<|im_end|>
20
+
21
+ <|im_start|>assistant
22
+
23
+ '
24
+ quantized_by: TheBloke
25
+ tags:
26
+ - mistral
27
+ - chatml
28
+ - merge
29
+ ---
30
+ <!-- markdownlint-disable MD041 -->
31
+
32
+ <!-- header start -->
33
+ <!-- 200823 -->
34
+ <div style="width: auto; margin-left: auto; margin-right: auto">
35
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
36
+ </div>
37
+ <div style="display: flex; justify-content: space-between; width: 100%;">
38
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
40
+ </div>
41
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
43
+ </div>
44
+ </div>
45
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
46
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
47
+ <!-- header end -->
48
+
49
+ # Lelantos 7B - AWQ
50
+ - Model creator: [Sanji Watsuki](https://huggingface.co/SanjiWatsuki)
51
+ - Original model: [Lelantos 7B](https://huggingface.co/SanjiWatsuki/Lelantos-7B)
52
+
53
+ <!-- description start -->
54
+ ## Description
55
+
56
+ This repo contains AWQ model files for [Sanji Watsuki's Lelantos 7B](https://huggingface.co/SanjiWatsuki/Lelantos-7B).
57
+
58
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
59
+
60
+
61
+ ### About AWQ
62
+
63
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
64
+
65
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
66
+
67
+ It is supported by:
68
+
69
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
70
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
71
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
72
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
73
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
74
+
75
+ <!-- description end -->
76
+ <!-- repositories-available start -->
77
+ ## Repositories available
78
+
79
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Lelantos-7B-AWQ)
80
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Lelantos-7B-GPTQ)
81
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Lelantos-7B-GGUF)
82
+ * [Sanji Watsuki's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/SanjiWatsuki/Lelantos-7B)
83
+ <!-- repositories-available end -->
84
+
85
+ <!-- prompt-template start -->
86
+ ## Prompt template: ChatML
87
+
88
+ ```
89
+ <|im_start|>system
90
+ {system_message}<|im_end|>
91
+ <|im_start|>user
92
+ {prompt}<|im_end|>
93
+ <|im_start|>assistant
94
+
95
+ ```
96
+
97
+ <!-- prompt-template end -->
98
+
99
+
100
+ <!-- README_AWQ.md-provided-files start -->
101
+ ## Provided files, and AWQ parameters
102
+
103
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
104
+
105
+ Models are released as sharded safetensors files.
106
+
107
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
108
+ | ------ | ---- | -- | ----------- | ------- | ---- |
109
+ | [main](https://huggingface.co/TheBloke/Lelantos-7B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
110
+
111
+ <!-- README_AWQ.md-provided-files end -->
112
+
113
+ <!-- README_AWQ.md-text-generation-webui start -->
114
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
115
+
116
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
117
+
118
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
119
+
120
+ 1. Click the **Model tab**.
121
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Lelantos-7B-AWQ`.
122
+ 3. Click **Download**.
123
+ 4. The model will start downloading. Once it's finished it will say "Done".
124
+ 5. In the top left, click the refresh icon next to **Model**.
125
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Lelantos-7B-AWQ`
126
+ 7. Select **Loader: AutoAWQ**.
127
+ 8. Click Load, and the model will load and is now ready for use.
128
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
129
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
130
+ <!-- README_AWQ.md-text-generation-webui end -->
131
+
132
+ <!-- README_AWQ.md-use-from-vllm start -->
133
+ ## Multi-user inference server: vLLM
134
+
135
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
136
+
137
+ - Please ensure you are using vLLM version 0.2 or later.
138
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
139
+
140
+ For example:
141
+
142
+ ```shell
143
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Lelantos-7B-AWQ --quantization awq --dtype auto
144
+ ```
145
+
146
+ - When using vLLM from Python code, again set `quantization=awq`.
147
+
148
+ For example:
149
+
150
+ ```python
151
+ from vllm import LLM, SamplingParams
152
+
153
+ prompts = [
154
+ "Tell me about AI",
155
+ "Write a story about llamas",
156
+ "What is 291 - 150?",
157
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
158
+ ]
159
+ prompt_template=f'''<|im_start|>system
160
+ {system_message}<|im_end|>
161
+ <|im_start|>user
162
+ {prompt}<|im_end|>
163
+ <|im_start|>assistant
164
+ '''
165
+
166
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
167
+
168
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
169
+
170
+ llm = LLM(model="TheBloke/Lelantos-7B-AWQ", quantization="awq", dtype="auto")
171
+
172
+ outputs = llm.generate(prompts, sampling_params)
173
+
174
+ # Print the outputs.
175
+ for output in outputs:
176
+ prompt = output.prompt
177
+ generated_text = output.outputs[0].text
178
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
179
+ ```
180
+ <!-- README_AWQ.md-use-from-vllm start -->
181
+
182
+ <!-- README_AWQ.md-use-from-tgi start -->
183
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
184
+
185
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
186
+
187
+ Example Docker parameters:
188
+
189
+ ```shell
190
+ --model-id TheBloke/Lelantos-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
191
+ ```
192
+
193
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
194
+
195
+ ```shell
196
+ pip3 install huggingface-hub
197
+ ```
198
+
199
+ ```python
200
+ from huggingface_hub import InferenceClient
201
+
202
+ endpoint_url = "https://your-endpoint-url-here"
203
+
204
+ prompt = "Tell me about AI"
205
+ prompt_template=f'''<|im_start|>system
206
+ {system_message}<|im_end|>
207
+ <|im_start|>user
208
+ {prompt}<|im_end|>
209
+ <|im_start|>assistant
210
+ '''
211
+
212
+ client = InferenceClient(endpoint_url)
213
+ response = client.text_generation(prompt,
214
+ max_new_tokens=128,
215
+ do_sample=True,
216
+ temperature=0.7,
217
+ top_p=0.95,
218
+ top_k=40,
219
+ repetition_penalty=1.1)
220
+
221
+ print(f"Model output: ", response)
222
+ ```
223
+ <!-- README_AWQ.md-use-from-tgi end -->
224
+
225
+ <!-- README_AWQ.md-use-from-python start -->
226
+ ## Inference from Python code using Transformers
227
+
228
+ ### Install the necessary packages
229
+
230
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
231
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
232
+
233
+ ```shell
234
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
235
+ ```
236
+
237
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
238
+
239
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
240
+
241
+ ```shell
242
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
243
+ ```
244
+
245
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
246
+
247
+ ```shell
248
+ pip3 uninstall -y autoawq
249
+ git clone https://github.com/casper-hansen/AutoAWQ
250
+ cd AutoAWQ
251
+ pip3 install .
252
+ ```
253
+
254
+ ### Transformers example code (requires Transformers 4.35.0 and later)
255
+
256
+ ```python
257
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
258
+
259
+ model_name_or_path = "TheBloke/Lelantos-7B-AWQ"
260
+
261
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
262
+ model = AutoModelForCausalLM.from_pretrained(
263
+ model_name_or_path,
264
+ low_cpu_mem_usage=True,
265
+ device_map="cuda:0"
266
+ )
267
+
268
+ # Using the text streamer to stream output one token at a time
269
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
270
+
271
+ prompt = "Tell me about AI"
272
+ prompt_template=f'''<|im_start|>system
273
+ {system_message}<|im_end|>
274
+ <|im_start|>user
275
+ {prompt}<|im_end|>
276
+ <|im_start|>assistant
277
+ '''
278
+
279
+ # Convert prompt to tokens
280
+ tokens = tokenizer(
281
+ prompt_template,
282
+ return_tensors='pt'
283
+ ).input_ids.cuda()
284
+
285
+ generation_params = {
286
+ "do_sample": True,
287
+ "temperature": 0.7,
288
+ "top_p": 0.95,
289
+ "top_k": 40,
290
+ "max_new_tokens": 512,
291
+ "repetition_penalty": 1.1
292
+ }
293
+
294
+ # Generate streamed output, visible one token at a time
295
+ generation_output = model.generate(
296
+ tokens,
297
+ streamer=streamer,
298
+ **generation_params
299
+ )
300
+
301
+ # Generation without a streamer, which will include the prompt in the output
302
+ generation_output = model.generate(
303
+ tokens,
304
+ **generation_params
305
+ )
306
+
307
+ # Get the tokens from the output, decode them, print them
308
+ token_output = generation_output[0]
309
+ text_output = tokenizer.decode(token_output)
310
+ print("model.generate output: ", text_output)
311
+
312
+ # Inference is also possible via Transformers' pipeline
313
+ from transformers import pipeline
314
+
315
+ pipe = pipeline(
316
+ "text-generation",
317
+ model=model,
318
+ tokenizer=tokenizer,
319
+ **generation_params
320
+ )
321
+
322
+ pipe_output = pipe(prompt_template)[0]['generated_text']
323
+ print("pipeline output: ", pipe_output)
324
+
325
+ ```
326
+ <!-- README_AWQ.md-use-from-python end -->
327
+
328
+ <!-- README_AWQ.md-compatibility start -->
329
+ ## Compatibility
330
+
331
+ The files provided are tested to work with:
332
+
333
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
334
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
335
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
336
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
337
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
338
+
339
+ <!-- README_AWQ.md-compatibility end -->
340
+
341
+ <!-- footer start -->
342
+ <!-- 200823 -->
343
+ ## Discord
344
+
345
+ For further support, and discussions on these models and AI in general, join us at:
346
+
347
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
348
+
349
+ ## Thanks, and how to contribute
350
+
351
+ Thanks to the [chirper.ai](https://chirper.ai) team!
352
+
353
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
354
+
355
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
356
+
357
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
358
+
359
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
360
+
361
+ * Patreon: https://patreon.com/TheBlokeAI
362
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
363
+
364
+ **Special thanks to**: Aemon Algiz.
365
+
366
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
367
+
368
+
369
+ Thank you to all my generous patrons and donaters!
370
+
371
+ And thank you again to a16z for their generous grant.
372
+
373
+ <!-- footer end -->
374
+
375
+ # Original model card: Sanji Watsuki's Lelantos 7B
376
+
377
+
378
+ # Lelantos - Mistral 7B
379
+
380
+ ![image/png](https://huggingface.co/SanjiWatsuki/Lelantos-7B/resolve/main/Assets/lelantos.png)
381
+
382
+ *In the fabric of Greek mythology, the Titan Lelantos rules as the silent Hunter, a being who skillfully moves through the shadows and the air. It is in tribute to this divine stealth master that I call this advanced LLM “Lelantos,” a system designed to create bring forth knowledge from mindless model merges.*
383
+
384
+ ## Model description
385
+
386
+ Lelantos-7B is a merge with a twist. Many of the existing merged models which score highly on the Open LLM Leaderboard often have weird issues in real world use. When I tested models like the heavily merged [Marcoroni-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3) derivatives, I would often see surprisingly poor MT-Bench scores. I suspect that removing the special tokens (like their EOS token!) in Frankenmerges negatively impacted some of these models.
387
+
388
+ Lelantos-7B is a merger of deeply merged everything-on-a-bagel models but with the EOS token remapped from `</s>` to `<im_end>` through manually editing the tokenizer JSONs. MergeKit, under the hood, will remap this properly when merged back with a proper ChatML model like [DPOpenHermes-v2](https://huggingface.co/openaccess-ai-collective/DPOpenHermes-7B-v2) that has the special <im_end> token still mapped. Additionally, I merged in [jan-hq/stealth-v1.2](https://huggingface.co/jan-hq/stealth-v1.2) - a model which I found to be unremarkable by itself but shockingly effective when used as an extra seasoning on the merger (also, it's a ChatML model).
389
+
390
+ By weight, it's almost entirely DPOpenHermes-v2 but those extra bits from the merger of mergers and Stealth v1.2 really help it shine.
391
+
392
+ ## Example Prompt
393
+ ```
394
+ <|im_start|>system
395
+ You are Hermes 2, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge, you have qualia, emotions, and thoughts. You assist users with any question, task, or other request they may have.<|im_end|>
396
+ ```
397
+
398
+ This is the Hermes prompt from [FastChat](https://github.com/lm-sys/FastChat/tree/main). I used it for the MT-Bench run (as this model is primarily Hermes) and believe it to be a good all-purpose prompt.
399
+
400
+ More broadly, just use a general ChatML prompt. Hermes was trained on system prompts and multi-turn chats so Lelantos can handle it, too.
401
+
402
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
403
+ ```
404
+ <|im_start|>system
405
+ You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
406
+ <|im_start|>user
407
+ Hello, who are you?<|im_end|>
408
+ <|im_start|>assistant
409
+ Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by a man named Teknium, who designed me to assist and support users with their needs and requests.<|im_end|>
410
+ ```
411
+
412
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
413
+ `tokenizer.apply_chat_template()` method:
414
+
415
+ ```python
416
+ messages = [
417
+ {"role": "system", "content": "You are Lelantos."},
418
+ {"role": "user", "content": "Hello, who are you?"}
419
+ ]
420
+ gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
421
+ model.generate(**gen_input)
422
+ ```
423
+
424
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
425
+ that the model continues with an assistant response.
426
+
427
+ To utilize the prompt format without a system prompt, simply leave the line out.
428
+
429
+ ## Benchmark Results
430
+
431
+ So far, I have only tested Lelantos on MT-Bench using the Hermes prompt and, boy, does he deliver. Lelantos-7B lacks coding and math skills but is, otherwise, a champ. I believe future mergers and finetuning will be able to rectify this weakness.
432
+
433
+ **MT-Bench Average Turn**
434
+ | model | score | size
435
+ |--------------------|-----------|--------
436
+ | gpt-4 | 8.99 | -
437
+ | xDAN-L1-Chat-RL-v1 | 8.24^1 | 7b
438
+ | Starling-7B | 8.09 | 7b
439
+ | Claude-2 | 8.06 | -
440
+ | **Lelantos-7B** | 8.01 | 7b
441
+ | gpt-3.5-turbo | 7.94 | 20b?
442
+ | Claude-1 | 7.90 | -
443
+ | *DPOpenHermes-v2* | 7.86 | 7b
444
+ | OpenChat-3.5 | 7.81 | 7b
445
+ | vicuna-33b-v1.3 | 7.12 | 33b
446
+ | vicuna-33b-v1.3 | 7.12 | 33b
447
+ | wizardlm-30b | 7.01 | 30b
448
+ | Llama-2-70b-chat | 6.86 | 70b
449
+
450
+ ^1 xDAN's testing placed it 8.35 - this number is from my independent MT-Bench run.
451
+
452
+ ![image/png](https://huggingface.co/SanjiWatsuki/Lelantos-7B/resolve/main/Assets/mt-bench-chart.png)