TheBloke commited on
Commit
651c148
·
1 Parent(s): 9f16d00

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +379 -0
README.md ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ language:
4
+ - en
5
+ license: llama2
6
+ model_creator: NousResearch
7
+ model_link: https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b
8
+ model_name: Nous Hermes Llama 2 13B
9
+ model_type: llama
10
+ quantized_by: TheBloke
11
+ tags:
12
+ - llama-2
13
+ - self-instruct
14
+ - distillation
15
+ - synthetic instruction
16
+ ---
17
+
18
+ <!-- header start -->
19
+ <!-- 200823 -->
20
+ <div style="width: auto; margin-left: auto; margin-right: auto">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
+ </div>
23
+ <div style="display: flex; justify-content: space-between; width: 100%;">
24
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
+ </div>
27
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
+ </div>
30
+ </div>
31
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
+ <!-- header end -->
34
+
35
+ # Nous Hermes Llama 2 13B - GGUF
36
+ - Model creator: [NousResearch](https://huggingface.co/NousResearch)
37
+ - Original model: [Nous Hermes Llama 2 13B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)
38
+
39
+ ## Description
40
+
41
+ This repo contains GGUF format model files for [Nous Research's Nous Hermes Llama 2 13B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b).
42
+
43
+ <!-- README_GGUF.md-about-gguf start -->
44
+ ### About GGUF
45
+
46
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
47
+
48
+ The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
49
+
50
+ Here are a list of clients and libraries that are known to support GGUF:
51
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp).
52
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions.
53
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with full GPU accel across multiple platforms and GPU architectures. Especially good for story telling.
54
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
55
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
56
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
57
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
58
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
59
+
60
+ <!-- README_GGUF.md-about-gguf end -->
61
+ <!-- repositories-available start -->
62
+ ## Repositories available
63
+
64
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GPTQ)
65
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML)
67
+ * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)
68
+ <!-- repositories-available end -->
69
+
70
+ <!-- prompt-template start -->
71
+ ## Prompt template: Alpaca
72
+
73
+ ```
74
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
75
+
76
+ ### Instruction:
77
+ {prompt}
78
+
79
+ ### Response:
80
+
81
+ ```
82
+
83
+ <!-- prompt-template end -->
84
+ <!-- compatibility_gguf start -->
85
+ ## Compatibility
86
+
87
+ These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
88
+
89
+ They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
90
+
91
+ ## Explanation of quantisation methods
92
+ <details>
93
+ <summary>Click to see details</summary>
94
+
95
+ The new methods available are:
96
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
97
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
98
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
99
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
100
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
101
+
102
+ Refer to the Provided Files table below to see what files use which methods, and how.
103
+ </details>
104
+ <!-- compatibility_gguf end -->
105
+
106
+ <!-- README_GGUF.md-provided-files start -->
107
+ ## Provided files
108
+
109
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
110
+ | ---- | ---- | ---- | ---- | ---- | ----- |
111
+ | [nous-hermes-llama2-13b.Q2_K.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
112
+ | [nous-hermes-llama2-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
113
+ | [nous-hermes-llama2-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
114
+ | [nous-hermes-llama2-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
115
+ | [nous-hermes-llama2-13b.Q4_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
116
+ | [nous-hermes-llama2-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
117
+ | [nous-hermes-llama2-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
118
+ | [nous-hermes-llama2-13b.Q5_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
119
+ | [nous-hermes-llama2-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
120
+ | [nous-hermes-llama2-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
121
+ | [nous-hermes-llama2-13b.Q6_K.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
122
+ | [nous-hermes-llama2-13b.Q8_0.gguf](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF/blob/main/nous-hermes-llama2-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
123
+
124
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
125
+
126
+
127
+
128
+ <!-- README_GGUF.md-provided-files end -->
129
+
130
+ <!-- README_GGUF.md-how-to-run start -->
131
+ ## Example `llama.cpp` command
132
+
133
+ Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
134
+
135
+ For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
136
+
137
+ ```
138
+ ./main -t 10 -ngl 32 -m nous-hermes-llama2-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
139
+ ```
140
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
141
+
142
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
143
+
144
+ Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
145
+
146
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
147
+
148
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
149
+
150
+ ## How to run in `text-generation-webui`
151
+
152
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
153
+
154
+ ## How to run from Python code
155
+
156
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
157
+
158
+ ### How to load this model from Python using ctransformers
159
+
160
+ #### First install the package
161
+
162
+ ```bash
163
+ # Base ctransformers with no GPU acceleration
164
+ pip install ctransformers>=0.2.24
165
+ # Or with CUDA GPU acceleration
166
+ pip install ctransformers[cuda]>=0.2.24
167
+ # Or with ROCm GPU acceleration
168
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
169
+ # Or with Metal GPU acceleration for macOS systems
170
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
171
+ ```
172
+
173
+ #### Simple example code to load one of these GGUF models
174
+
175
+ ```python
176
+ from ctransformers import AutoModelForCausalLM
177
+
178
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
179
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Nous-Hermes-Llama2-GGUF", model_file="nous-hermes-llama2-13b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
180
+
181
+ print(llm("AI is going to"))
182
+ ```
183
+
184
+ ## How to use with LangChain
185
+
186
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
187
+
188
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
189
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
190
+
191
+ <!-- README_GGUF.md-how-to-run end -->
192
+
193
+ <!-- footer start -->
194
+ <!-- 200823 -->
195
+ ## Discord
196
+
197
+ For further support, and discussions on these models and AI in general, join us at:
198
+
199
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
200
+
201
+ ## Thanks, and how to contribute.
202
+
203
+ Thanks to the [chirper.ai](https://chirper.ai) team!
204
+
205
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
206
+
207
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
208
+
209
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
210
+
211
+ * Patreon: https://patreon.com/TheBlokeAI
212
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
213
+
214
+ **Special thanks to**: Aemon Algiz.
215
+
216
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
217
+
218
+
219
+ Thank you to all my generous patrons and donaters!
220
+
221
+ And thank you again to a16z for their generous grant.
222
+
223
+ <!-- footer end -->
224
+
225
+ <!-- original-model-card start -->
226
+ # Original model card: Nous Research's Nous Hermes Llama 2 13B
227
+
228
+
229
+ # Model Card: Nous-Hermes-Llama2-13b
230
+
231
+ Compute provided by our project sponsor Redmond AI, thank you! Follow RedmondAI on Twitter @RedmondAI.
232
+
233
+ ## Model Description
234
+
235
+ Nous-Hermes-Llama2-13b is a state-of-the-art language model fine-tuned on over 300,000 instructions. This model was fine-tuned by Nous Research, with Teknium and Emozilla leading the fine tuning process and dataset curation, Redmond AI sponsoring the compute, and several other contributors.
236
+
237
+ This Hermes model uses the exact same dataset as Hermes on Llama-1. This is to ensure consistency between the old Hermes and new, for anyone who wanted to keep Hermes as similar to the old one, just more capable.
238
+
239
+ This model stands out for its long responses, lower hallucination rate, and absence of OpenAI censorship mechanisms. The fine-tuning process was performed with a 4096 sequence length on an 8x a100 80GB DGX machine.
240
+
241
+ ## Example Outputs:
242
+ ![Example4](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/example5.png "Example 4")
243
+ ![Example1](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/Example1.png "Example 1")
244
+ ![Example2](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/example2.png "Example 2")
245
+ ![Example3](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b/resolve/main/example3.png "Example 3")
246
+
247
+ ## Model Training
248
+
249
+ The model was trained almost entirely on synthetic GPT-4 outputs. Curating high quality GPT-4 datasets enables incredibly high quality in knowledge, task completion, and style.
250
+
251
+ This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), and several others, detailed further below
252
+
253
+ ## Collaborators
254
+ The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Emozilla, Huemin Art, and Redmond AI.
255
+
256
+ Special mention goes to @winglian for assisting in some of the training issues.
257
+
258
+ Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly.
259
+
260
+ Among the contributors of datasets:
261
+ - GPTeacher was made available by Teknium
262
+ - Wizard LM by nlpxucan
263
+ - Nous Research Instruct Dataset was provided by Karan4D and HueminArt.
264
+ - GPT4-LLM and Unnatural Instructions were provided by Microsoft
265
+ - Airoboros dataset by jondurbin
266
+ - Camel-AI's domain expert datasets are from Camel-AI
267
+ - CodeAlpaca dataset by Sahil 2801.
268
+
269
+ If anyone was left out, please open a thread in the community tab.
270
+
271
+ ## Prompt Format
272
+
273
+ The model follows the Alpaca prompt format:
274
+ ```
275
+ ### Instruction:
276
+ <prompt>
277
+
278
+ ### Response:
279
+ <leave a newline blank for model to respond>
280
+
281
+ ```
282
+
283
+ or
284
+
285
+ ```
286
+ ### Instruction:
287
+ <prompt>
288
+
289
+ ### Input:
290
+ <additional context>
291
+
292
+ ### Response:
293
+ <leave a newline blank for model to respond>
294
+
295
+ ```
296
+
297
+ ## Benchmark Results
298
+ AGI-Eval
299
+ ```
300
+ | Task |Version| Metric |Value | |Stderr|
301
+ |agieval_aqua_rat | 0|acc |0.2362|± |0.0267|
302
+ | | |acc_norm|0.2480|± |0.0272|
303
+ |agieval_logiqa_en | 0|acc |0.3425|± |0.0186|
304
+ | | |acc_norm|0.3472|± |0.0187|
305
+ |agieval_lsat_ar | 0|acc |0.2522|± |0.0287|
306
+ | | |acc_norm|0.2087|± |0.0269|
307
+ |agieval_lsat_lr | 0|acc |0.3510|± |0.0212|
308
+ | | |acc_norm|0.3627|± |0.0213|
309
+ |agieval_lsat_rc | 0|acc |0.4647|± |0.0305|
310
+ | | |acc_norm|0.4424|± |0.0303|
311
+ |agieval_sat_en | 0|acc |0.6602|± |0.0331|
312
+ | | |acc_norm|0.6165|± |0.0340|
313
+ |agieval_sat_en_without_passage| 0|acc |0.4320|± |0.0346|
314
+ | | |acc_norm|0.4272|± |0.0345|
315
+ |agieval_sat_math | 0|acc |0.2909|± |0.0307|
316
+ | | |acc_norm|0.2727|± |0.0301|
317
+ ```
318
+ GPT-4All Benchmark Set
319
+ ```
320
+ | Task |Version| Metric |Value | |Stderr|
321
+ |arc_challenge| 0|acc |0.5102|± |0.0146|
322
+ | | |acc_norm|0.5213|± |0.0146|
323
+ |arc_easy | 0|acc |0.7959|± |0.0083|
324
+ | | |acc_norm|0.7567|± |0.0088|
325
+ |boolq | 1|acc |0.8394|± |0.0064|
326
+ |hellaswag | 0|acc |0.6164|± |0.0049|
327
+ | | |acc_norm|0.8009|± |0.0040|
328
+ |openbookqa | 0|acc |0.3580|± |0.0215|
329
+ | | |acc_norm|0.4620|± |0.0223|
330
+ |piqa | 0|acc |0.7992|± |0.0093|
331
+ | | |acc_norm|0.8069|± |0.0092|
332
+ |winogrande | 0|acc |0.7127|± |0.0127|
333
+ ```
334
+ BigBench Reasoning Test
335
+ ```
336
+ | Task |Version| Metric |Value | |Stderr|
337
+
338
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.5526|± |0.0362|
339
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.7344|± |0.0230|
340
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.2636|± |0.0275|
341
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.0195|± |0.0073|
342
+ | | |exact_str_match |0.0000|± |0.0000|
343
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2760|± |0.0200|
344
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2100|± |0.0154|
345
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4400|± |0.0287|
346
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.2440|± |0.0192|
347
+ |bigbench_navigate | 0|multiple_choice_grade|0.4950|± |0.0158|
348
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.5570|± |0.0111|
349
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.3728|± |0.0229|
350
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1854|± |0.0123|
351
+ |bigbench_snarks | 0|multiple_choice_grade|0.6298|± |0.0360|
352
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.6156|± |0.0155|
353
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.3140|± |0.0147|
354
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2032|± |0.0114|
355
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1406|± |0.0083|
356
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4400|± |0.0287|
357
+ ```
358
+
359
+ These are the highest benchmarks Hermes has seen on every metric, achieving the following average scores:
360
+ - GPT4All benchmark average is now 70.0 - from 68.8 in Hermes-Llama1
361
+ - 0.3657 on BigBench, up from 0.328 on hermes-llama1
362
+ - 0.372 on AGIEval, up from 0.354 on Hermes-llama1
363
+
364
+ These benchmarks currently have us at #1 on ARC-c, ARC-e, Hellaswag, and OpenBookQA, and 2nd place on Winogrande, comparing to GPT4all's benchmarking list, supplanting Hermes 1 for the new top position.
365
+
366
+ ## Resources for Applied Use Cases:
367
+ Check out LM Studio for a nice chatgpt style interface here: https://lmstudio.ai/
368
+ For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord
369
+ For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot
370
+
371
+ ## Future Plans
372
+ We plan to continue to iterate on both more high quality data, and new data filtering techniques to eliminate lower quality data going forward.
373
+
374
+ ## Model Usage
375
+ The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.
376
+
377
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
378
+
379
+ <!-- original-model-card end -->