TheBloke commited on
Commit
4e84d2a
·
1 Parent(s): 0f54b86

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -21
README.md CHANGED
@@ -1,11 +1,41 @@
1
  ---
 
2
  inference: false
 
3
  license: llama2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  model_creator: WizardLM
5
- model_link: https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0
6
  model_name: WizardCoder Python 13B V1.0
7
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
8
  quantized_by: TheBloke
 
 
9
  ---
10
 
11
  <!-- header start -->
@@ -40,9 +70,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
40
  <!-- repositories-available start -->
41
  ## Repositories available
42
 
 
43
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ)
44
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GGUF)
45
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GGML)
46
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0)
47
  <!-- repositories-available end -->
48
 
@@ -61,6 +91,7 @@ Below is an instruction that describes a task. Write a response that appropriate
61
 
62
  <!-- prompt-template end -->
63
 
 
64
  <!-- README_GPTQ.md-provided-files start -->
65
  ## Provided files and GPTQ parameters
66
 
@@ -85,22 +116,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
85
 
86
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
87
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
88
- | [main](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
89
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
90
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
91
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
92
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
93
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
94
 
95
  <!-- README_GPTQ.md-provided-files end -->
96
 
97
  <!-- README_GPTQ.md-download-from-branches start -->
98
  ## How to download from branches
99
 
100
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
101
  - With Git, you can clone a branch with:
102
  ```
103
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ
104
  ```
105
  - In Python Transformers code, the branch is the `revision` parameter; see below.
106
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -113,7 +144,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
113
 
114
  1. Click the **Model tab**.
115
  2. Under **Download custom model or LoRA**, enter `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ`.
116
- - To download from a specific branch, enter for example `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
117
  - see Provided Files above for the list of branches for each option.
118
  3. Click **Download**.
119
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -161,10 +192,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
161
 
162
  model_name_or_path = "TheBloke/WizardCoder-Python-13B-V1.0-GPTQ"
163
  # To use a different branch, change revision
164
- # For example: revision="gptq-4bit-32g-actorder_True"
165
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
166
- torch_dtype=torch.float16,
167
  device_map="auto",
 
168
  revision="main")
169
 
170
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -182,7 +213,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
182
  print("\n\n*** Generate:")
183
 
184
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
185
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
186
  print(tokenizer.decode(output[0]))
187
 
188
  # Inference can also be done using transformers' pipeline
@@ -193,9 +224,11 @@ pipe = pipeline(
193
  model=model,
194
  tokenizer=tokenizer,
195
  max_new_tokens=512,
 
196
  temperature=0.7,
197
  top_p=0.95,
198
- repetition_penalty=1.15
 
199
  )
200
 
201
  print(pipe(prompt_template)[0]['generated_text'])
@@ -220,10 +253,12 @@ For further support, and discussions on these models and AI in general, join us
220
 
221
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
222
 
223
- ## Thanks, and how to contribute.
224
 
225
  Thanks to the [chirper.ai](https://chirper.ai) team!
226
 
 
 
227
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
228
 
229
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -235,7 +270,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
235
 
236
  **Special thanks to**: Aemon Algiz.
237
 
238
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
239
 
240
 
241
  Thank you to all my generous patrons and donaters!
@@ -324,9 +359,10 @@ Note: This script supports `WizardLM/WizardCoder-Python-34B/13B/7B-V1.0`. If you
324
  Please cite the repo if you use the data, method or code in this repo.
325
 
326
  ```
327
- @misc{luo2023wizardcoder,
328
- title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
329
- author={Ziyang Luo and Can Xu and Pu Zhao and Qingfeng Sun and Xiubo Geng and Wenxiang Hu and Chongyang Tao and Jing Ma and Qingwei Lin and Daxin Jiang},
330
- year={2023},
 
331
  }
332
  ```
 
1
  ---
2
+ base_model: https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0
3
  inference: false
4
+ library_name: transformers
5
  license: llama2
6
+ metrics:
7
+ - code_eval
8
+ model-index:
9
+ - name: WizardCoder-Python-13B-V1.0
10
+ results:
11
+ - dataset:
12
+ name: HumanEval
13
+ type: openai_humaneval
14
+ metrics:
15
+ - name: pass@1
16
+ type: pass@1
17
+ value: 0.64
18
+ verified: false
19
+ task:
20
+ type: text-generation
21
  model_creator: WizardLM
 
22
  model_name: WizardCoder Python 13B V1.0
23
  model_type: llama
24
+ prompt_template: 'Below is an instruction that describes a task. Write a response
25
+ that appropriately completes the request.
26
+
27
+
28
+ ### Instruction:
29
+
30
+ {prompt}
31
+
32
+
33
+ ### Response:
34
+
35
+ '
36
  quantized_by: TheBloke
37
+ tags:
38
+ - code
39
  ---
40
 
41
  <!-- header start -->
 
70
  <!-- repositories-available start -->
71
  ## Repositories available
72
 
73
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-AWQ)
74
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ)
75
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GGUF)
 
76
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0)
77
  <!-- repositories-available end -->
78
 
 
91
 
92
  <!-- prompt-template end -->
93
 
94
+
95
  <!-- README_GPTQ.md-provided-files start -->
96
  ## Provided files and GPTQ parameters
97
 
 
116
 
117
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
118
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
119
+ | [main](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |
120
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
121
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
122
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
123
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
124
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
125
 
126
  <!-- README_GPTQ.md-provided-files end -->
127
 
128
  <!-- README_GPTQ.md-download-from-branches start -->
129
  ## How to download from branches
130
 
131
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ:main`
132
  - With Git, you can clone a branch with:
133
  ```
134
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ
135
  ```
136
  - In Python Transformers code, the branch is the `revision` parameter; see below.
137
  <!-- README_GPTQ.md-download-from-branches end -->
 
144
 
145
  1. Click the **Model tab**.
146
  2. Under **Download custom model or LoRA**, enter `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ`.
147
+ - To download from a specific branch, enter for example `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ:main`
148
  - see Provided Files above for the list of branches for each option.
149
  3. Click **Download**.
150
  4. The model will start downloading. Once it's finished it will say "Done".
 
192
 
193
  model_name_or_path = "TheBloke/WizardCoder-Python-13B-V1.0-GPTQ"
194
  # To use a different branch, change revision
195
+ # For example: revision="main"
196
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
197
  device_map="auto",
198
+ trust_remote_code=False,
199
  revision="main")
200
 
201
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
213
  print("\n\n*** Generate:")
214
 
215
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
216
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
217
  print(tokenizer.decode(output[0]))
218
 
219
  # Inference can also be done using transformers' pipeline
 
224
  model=model,
225
  tokenizer=tokenizer,
226
  max_new_tokens=512,
227
+ do_sample=True,
228
  temperature=0.7,
229
  top_p=0.95,
230
+ top_k=40,
231
+ repetition_penalty=1.1
232
  )
233
 
234
  print(pipe(prompt_template)[0]['generated_text'])
 
253
 
254
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
255
 
256
+ ## Thanks, and how to contribute
257
 
258
  Thanks to the [chirper.ai](https://chirper.ai) team!
259
 
260
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
261
+
262
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
263
 
264
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
270
 
271
  **Special thanks to**: Aemon Algiz.
272
 
273
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
274
 
275
 
276
  Thank you to all my generous patrons and donaters!
 
359
  Please cite the repo if you use the data, method or code in this repo.
360
 
361
  ```
362
+ @article{luo2023wizardcoder,
363
+ title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
364
+ author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
365
+ journal={arXiv preprint arXiv:2306.08568},
366
+ year={2023}
367
  }
368
  ```