TheBloke commited on
Commit
87c7512
Β·
1 Parent(s): 90ec4ae

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -61
README.md CHANGED
@@ -1,29 +1,11 @@
1
  ---
2
  inference: false
3
- library_name: transformers
4
  license: llama2
5
- metrics:
6
- - code_eval
7
- model-index:
8
- - name: WizardCoder-Python-13B-V1.0
9
- results:
10
- - dataset:
11
- name: HumanEval
12
- type: openai_humaneval
13
- metrics:
14
- - name: pass@1
15
- type: pass@1
16
- value: 0.64
17
- verified: false
18
- task:
19
- type: text-generation
20
  model_creator: WizardLM
21
  model_link: https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0
22
  model_name: WizardCoder Python 13B V1.0
23
  model_type: llama
24
  quantized_by: TheBloke
25
- tags:
26
- - code
27
  ---
28
 
29
  <!-- header start -->
@@ -47,19 +29,24 @@ tags:
47
  - Model creator: [WizardLM](https://huggingface.co/WizardLM)
48
  - Original model: [WizardCoder Python 13B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0)
49
 
 
50
  ## Description
51
 
52
  This repo contains GPTQ model files for [WizardLM's WizardCoder Python 13B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0).
53
 
54
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
55
 
 
 
56
  ## Repositories available
57
 
58
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ)
59
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GGUF)
60
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GGML)
61
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0)
 
62
 
 
63
  ## Prompt template: Alpaca
64
 
65
  ```
@@ -72,20 +59,23 @@ Below is an instruction that describes a task. Write a response that appropriate
72
 
73
  ```
74
 
 
 
 
75
  ## Provided files and GPTQ parameters
76
 
77
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
78
 
79
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
80
 
81
- All GPTQ files are made with AutoGPTQ.
82
 
83
  <details>
84
  <summary>Explanation of GPTQ parameters</summary>
85
 
86
  - Bits: The bit size of the quantised model.
87
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
88
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
89
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
90
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
91
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -102,6 +92,9 @@ All GPTQ files are made with AutoGPTQ.
102
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
103
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
104
 
 
 
 
105
  ## How to download from branches
106
 
107
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
@@ -110,73 +103,72 @@ All GPTQ files are made with AutoGPTQ.
110
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ
111
  ```
112
  - In Python Transformers code, the branch is the `revision` parameter; see below.
113
-
 
114
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
115
 
116
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
117
 
118
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
119
 
120
  1. Click the **Model tab**.
121
  2. Under **Download custom model or LoRA**, enter `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ`.
122
  - To download from a specific branch, enter for example `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
123
  - see Provided Files above for the list of branches for each option.
124
  3. Click **Download**.
125
- 4. The model will start downloading. Once it's finished it will say "Done"
126
  5. In the top left, click the refresh icon next to **Model**.
127
  6. In the **Model** dropdown, choose the model you just downloaded: `WizardCoder-Python-13B-V1.0-GPTQ`
128
  7. The model will automatically load, and is now ready for use!
129
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
130
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
131
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
132
 
 
133
  ## How to use this GPTQ model from Python code
134
 
135
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
136
 
137
- ```
138
- pip3 install auto-gptq
139
- ```
140
 
141
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
142
  ```
 
 
 
 
143
  pip3 uninstall -y auto-gptq
144
  git clone https://github.com/PanQiWei/AutoGPTQ
145
  cd AutoGPTQ
146
  pip3 install .
147
  ```
148
 
149
- Then try the following example code:
 
 
 
 
 
 
 
 
150
 
151
  ```python
152
- from transformers import AutoTokenizer, pipeline, logging
153
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
154
 
155
  model_name_or_path = "TheBloke/WizardCoder-Python-13B-V1.0-GPTQ"
156
-
157
- use_triton = False
 
 
 
 
158
 
159
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
160
 
161
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
162
- use_safetensors=True,
163
- trust_remote_code=False,
164
- device="cuda:0",
165
- use_triton=use_triton,
166
- quantize_config=None)
167
-
168
- """
169
- # To download from a specific branch, use the revision parameter, as in this example:
170
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
171
-
172
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
173
- revision="gptq-4bit-32g-actorder_True",
174
- use_safetensors=True,
175
- trust_remote_code=False,
176
- device="cuda:0",
177
- quantize_config=None)
178
- """
179
-
180
  prompt = "Tell me about AI"
181
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
182
 
@@ -195,9 +187,6 @@ print(tokenizer.decode(output[0]))
195
 
196
  # Inference can also be done using transformers' pipeline
197
 
198
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
199
- logging.set_verbosity(logging.CRITICAL)
200
-
201
  print("*** Pipeline:")
202
  pipe = pipeline(
203
  "text-generation",
@@ -211,12 +200,17 @@ pipe = pipeline(
211
 
212
  print(pipe(prompt_template)[0]['generated_text'])
213
  ```
 
214
 
 
215
  ## Compatibility
216
 
217
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
218
 
219
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
220
 
221
  <!-- footer start -->
222
  <!-- 200823 -->
@@ -241,7 +235,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
241
 
242
  **Special thanks to**: Aemon Algiz.
243
 
244
- **Patreon special mentions**: Kacper WikieΕ‚, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
245
 
246
 
247
  Thank you to all my generous patrons and donaters!
@@ -273,7 +267,8 @@ And thank you again to a16z for their generous grant.
273
  | WizardCoder-Python-34B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 61.2 | [Demo](http://47.103.63.15:50085/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
274
  | WizardCoder-15B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 |50.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
275
  | WizardCoder-Python-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | 55.6 | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
276
- | WizardCoder-3B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 |37.4 | [Demo](http://47.103.63.15:50086/) | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
 
277
  | WizardCoder-1B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 |28.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
278
 
279
 
@@ -305,6 +300,14 @@ And thank you again to a16z for their generous grant.
305
  | <sup>WizardLM-7B-V1.0 </sup>| <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 </sup>|<sup> Non-commercial</sup>|
306
  </font>
307
 
 
 
 
 
 
 
 
 
308
  ## Prompt Format
309
  ```
310
  "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
@@ -318,7 +321,7 @@ Note: This script supports `WizardLM/WizardCoder-Python-34B/13B/7B-V1.0`. If you
318
 
319
  ## Citation
320
 
321
- Please cite the repo if you use the data or code in this repo.
322
 
323
  ```
324
  @misc{luo2023wizardcoder,
 
1
  ---
2
  inference: false
 
3
  license: llama2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  model_creator: WizardLM
5
  model_link: https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0
6
  model_name: WizardCoder Python 13B V1.0
7
  model_type: llama
8
  quantized_by: TheBloke
 
 
9
  ---
10
 
11
  <!-- header start -->
 
29
  - Model creator: [WizardLM](https://huggingface.co/WizardLM)
30
  - Original model: [WizardCoder Python 13B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0)
31
 
32
+ <!-- description start -->
33
  ## Description
34
 
35
  This repo contains GPTQ model files for [WizardLM's WizardCoder Python 13B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0).
36
 
37
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
38
 
39
+ <!-- description end -->
40
+ <!-- repositories-available start -->
41
  ## Repositories available
42
 
43
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ)
44
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GGUF)
45
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GGML)
46
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0)
47
+ <!-- repositories-available end -->
48
 
49
+ <!-- prompt-template start -->
50
  ## Prompt template: Alpaca
51
 
52
  ```
 
59
 
60
  ```
61
 
62
+ <!-- prompt-template end -->
63
+
64
+ <!-- README_GPTQ.md-provided-files start -->
65
  ## Provided files and GPTQ parameters
66
 
67
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
68
 
69
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
70
 
71
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
72
 
73
  <details>
74
  <summary>Explanation of GPTQ parameters</summary>
75
 
76
  - Bits: The bit size of the quantised model.
77
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
78
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
79
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
80
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
81
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
92
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
93
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
94
 
95
+ <!-- README_GPTQ.md-provided-files end -->
96
+
97
+ <!-- README_GPTQ.md-download-from-branches start -->
98
  ## How to download from branches
99
 
100
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
 
103
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GPTQ
104
  ```
105
  - In Python Transformers code, the branch is the `revision` parameter; see below.
106
+ <!-- README_GPTQ.md-download-from-branches end -->
107
+ <!-- README_GPTQ.md-text-generation-webui start -->
108
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
109
 
110
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
111
 
112
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
113
 
114
  1. Click the **Model tab**.
115
  2. Under **Download custom model or LoRA**, enter `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ`.
116
  - To download from a specific branch, enter for example `TheBloke/WizardCoder-Python-13B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
117
  - see Provided Files above for the list of branches for each option.
118
  3. Click **Download**.
119
+ 4. The model will start downloading. Once it's finished it will say "Done".
120
  5. In the top left, click the refresh icon next to **Model**.
121
  6. In the **Model** dropdown, choose the model you just downloaded: `WizardCoder-Python-13B-V1.0-GPTQ`
122
  7. The model will automatically load, and is now ready for use!
123
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
124
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
125
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
126
+ <!-- README_GPTQ.md-text-generation-webui end -->
127
 
128
+ <!-- README_GPTQ.md-use-from-python start -->
129
  ## How to use this GPTQ model from Python code
130
 
131
+ ### Install the necessary packages
132
 
133
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
134
 
135
+ ```shell
136
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
137
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
138
  ```
139
+
140
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
141
+
142
+ ```shell
143
  pip3 uninstall -y auto-gptq
144
  git clone https://github.com/PanQiWei/AutoGPTQ
145
  cd AutoGPTQ
146
  pip3 install .
147
  ```
148
 
149
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
150
+
151
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
152
+ ```shell
153
+ pip3 uninstall -y transformers
154
+ pip3 install git+https://github.com/huggingface/transformers.git
155
+ ```
156
+
157
+ ### You can then use the following code
158
 
159
  ```python
160
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
161
 
162
  model_name_or_path = "TheBloke/WizardCoder-Python-13B-V1.0-GPTQ"
163
+ # To use a different branch, change revision
164
+ # For example: revision="gptq-4bit-32g-actorder_True"
165
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
166
+ torch_dtype=torch.float16,
167
+ device_map="auto",
168
+ revision="main")
169
 
170
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  prompt = "Tell me about AI"
173
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
174
 
 
187
 
188
  # Inference can also be done using transformers' pipeline
189
 
 
 
 
190
  print("*** Pipeline:")
191
  pipe = pipeline(
192
  "text-generation",
 
200
 
201
  print(pipe(prompt_template)[0]['generated_text'])
202
  ```
203
+ <!-- README_GPTQ.md-use-from-python end -->
204
 
205
+ <!-- README_GPTQ.md-compatibility start -->
206
  ## Compatibility
207
 
208
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
209
+
210
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
211
 
212
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
213
+ <!-- README_GPTQ.md-compatibility end -->
214
 
215
  <!-- footer start -->
216
  <!-- 200823 -->
 
235
 
236
  **Special thanks to**: Aemon Algiz.
237
 
238
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper WikieΕ‚, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik BjΓ€reholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
239
 
240
 
241
  Thank you to all my generous patrons and donaters!
 
267
  | WizardCoder-Python-34B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 61.2 | [Demo](http://47.103.63.15:50085/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
268
  | WizardCoder-15B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 |50.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
269
  | WizardCoder-Python-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | 55.6 | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
270
+ | WizardCoder-Python-7B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 55.5 | 51.6 | [Demo](http://47.103.63.15:50088/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
271
+ | WizardCoder-3B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 |37.4 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
272
  | WizardCoder-1B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 |28.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
273
 
274
 
 
300
  | <sup>WizardLM-7B-V1.0 </sup>| <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 </sup>|<sup> Non-commercial</sup>|
301
  </font>
302
 
303
+ ## Comparing WizardCoder-Python-34B-V1.0 with Other LLMs.
304
+
305
+ πŸ”₯ The following figure shows that our **WizardCoder-Python-34B-V1.0 attains the second position in this benchmark**, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).
306
+
307
+ <p align="center" width="100%">
308
+ <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/compare_sota.png" alt="WizardCoder" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
309
+ </p>
310
+
311
  ## Prompt Format
312
  ```
313
  "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
 
321
 
322
  ## Citation
323
 
324
+ Please cite the repo if you use the data, method or code in this repo.
325
 
326
  ```
327
  @misc{luo2023wizardcoder,