Transformers
llama
TheBloke commited on
Commit
04f2eec
·
1 Parent(s): 6dc44af

Initial GGML model commit

Browse files
Files changed (1) hide show
  1. README.md +21 -21
README.md CHANGED
@@ -3,7 +3,7 @@ inference: false
3
  license: other
4
  model_creator: WizardLM
5
  model_link: https://huggingface.co/WizardLM/WizardMath-7b-V1.0
6
- model_name: WizardMath 13B V1.0
7
  model_type: llama
8
  quantized_by: TheBloke
9
  ---
@@ -22,13 +22,13 @@ quantized_by: TheBloke
22
  </div>
23
  <!-- header end -->
24
 
25
- # WizardMath 13B V1.0 - GGML
26
  - Model creator: [WizardLM](https://huggingface.co/WizardLM)
27
- - Original model: [WizardMath 13B V1.0](https://huggingface.co/WizardLM/WizardMath-7b-V1.0)
28
 
29
  ## Description
30
 
31
- This repo contains GGML format model files for [WizardLM's WizardMath 13B V1.0](https://huggingface.co/WizardLM/WizardMath-7b-V1.0).
32
 
33
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
34
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
@@ -40,8 +40,8 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
40
 
41
  ## Repositories available
42
 
43
- * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ)
44
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML)
45
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardMath-7b-V1.0)
46
 
47
  ## Prompt template: Alpaca-CoT
@@ -84,20 +84,20 @@ Refer to the Provided Files table below to see what files use which methods, and
84
 
85
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
86
  | ---- | ---- | ---- | ---- | ---- | ----- |
87
- | [wizardmath-7b-v1.0.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q2_K.bin) | q2_K | 2 | 3.05 GB| 5.55 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
88
- | [wizardmath-7b-v1.0.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 3.77 GB| 6.27 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
89
- | [wizardmath-7b-v1.0.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 3.45 GB| 5.95 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
90
- | [wizardmath-7b-v1.0.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 3.12 GB| 5.62 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
91
- | [wizardmath-7b-v1.0.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q4_0.bin) | q4_0 | 4 | 3.79 GB| 6.29 GB | Original quant method, 4-bit. |
92
- | [wizardmath-7b-v1.0.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q4_1.bin) | q4_1 | 4 | 4.21 GB| 6.71 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
93
- | [wizardmath-7b-v1.0.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 4.24 GB| 6.74 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
94
- | [wizardmath-7b-v1.0.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 3.98 GB| 6.48 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
95
- | [wizardmath-7b-v1.0.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q5_0.bin) | q5_0 | 5 | 4.63 GB| 7.13 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
96
- | [wizardmath-7b-v1.0.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q5_1.bin) | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
97
- | [wizardmath-7b-v1.0.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 4.92 GB| 7.42 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
98
- | [wizardmath-7b-v1.0.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 4.79 GB| 7.29 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
99
- | [wizardmath-7b-v1.0.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q6_K.bin) | q6_K | 6 | 5.65 GB| 8.15 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
100
- | [wizardmath-7b-v1.0.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q8_0.bin) | q8_0 | 8 | 7.16 GB| 9.66 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
101
 
102
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
103
 
@@ -151,7 +151,7 @@ Thank you to all my generous patrons and donaters!
151
 
152
  <!-- footer end -->
153
 
154
- # Original model card: WizardLM's WizardMath 13B V1.0
155
 
156
 
157
 
 
3
  license: other
4
  model_creator: WizardLM
5
  model_link: https://huggingface.co/WizardLM/WizardMath-7b-V1.0
6
+ model_name: WizardMath 7B V1.0
7
  model_type: llama
8
  quantized_by: TheBloke
9
  ---
 
22
  </div>
23
  <!-- header end -->
24
 
25
+ # WizardMath 7B V1.0 - GGML
26
  - Model creator: [WizardLM](https://huggingface.co/WizardLM)
27
+ - Original model: [WizardMath 7B V1.0](https://huggingface.co/WizardLM/WizardMath-7b-V1.0)
28
 
29
  ## Description
30
 
31
+ This repo contains GGML format model files for [WizardLM's WizardMath 7B V1.0](https://huggingface.co/WizardLM/WizardMath-7b-V1.0).
32
 
33
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
34
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
 
40
 
41
  ## Repositories available
42
 
43
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GPTQ)
44
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML)
45
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardMath-7b-V1.0)
46
 
47
  ## Prompt template: Alpaca-CoT
 
84
 
85
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
86
  | ---- | ---- | ---- | ---- | ---- | ----- |
87
+ | [wizardmath-7b-v1.0.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q2_K.bin) | q2_K | 2 | 3.05 GB| 5.55 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
88
+ | [wizardmath-7b-v1.0.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 3.77 GB| 6.27 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
89
+ | [wizardmath-7b-v1.0.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 3.45 GB| 5.95 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
90
+ | [wizardmath-7b-v1.0.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 3.12 GB| 5.62 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
91
+ | [wizardmath-7b-v1.0.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q4_0.bin) | q4_0 | 4 | 3.79 GB| 6.29 GB | Original quant method, 4-bit. |
92
+ | [wizardmath-7b-v1.0.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q4_1.bin) | q4_1 | 4 | 4.21 GB| 6.71 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
93
+ | [wizardmath-7b-v1.0.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 4.24 GB| 6.74 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
94
+ | [wizardmath-7b-v1.0.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 3.98 GB| 6.48 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
95
+ | [wizardmath-7b-v1.0.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q5_0.bin) | q5_0 | 5 | 4.63 GB| 7.13 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
96
+ | [wizardmath-7b-v1.0.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q5_1.bin) | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
97
+ | [wizardmath-7b-v1.0.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 4.92 GB| 7.42 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
98
+ | [wizardmath-7b-v1.0.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 4.79 GB| 7.29 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
99
+ | [wizardmath-7b-v1.0.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q6_K.bin) | q6_K | 6 | 5.65 GB| 8.15 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
100
+ | [wizardmath-7b-v1.0.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/WizardMath-7B-V1.0-GGML/blob/main/wizardmath-7b-v1.0.ggmlv3.q8_0.bin) | q8_0 | 8 | 7.16 GB| 9.66 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
101
 
102
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
103
 
 
151
 
152
  <!-- footer end -->
153
 
154
+ # Original model card: WizardLM's WizardMath 7B V1.0
155
 
156
 
157