TheBloke commited on
Commit
2b4935d
·
verified ·
1 Parent(s): f87e4e9

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +531 -0
README.md ADDED
@@ -0,0 +1,531 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
3
+ inference: false
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ license: other
8
+ license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
9
+ license_name: yi-license
10
+ model_creator: brucethemoose
11
+ model_name: Yi 34B 200K DARE MegaMerge V8
12
+ model_type: yi
13
+ prompt_template: 'SYSTEM: {system_message}
14
+
15
+ USER: {prompt}
16
+
17
+ ASSISTANT:
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ tags:
22
+ - mergekit
23
+ - merge
24
+ - Yi
25
+ ---
26
+ <!-- markdownlint-disable MD041 -->
27
+
28
+ <!-- header start -->
29
+ <!-- 200823 -->
30
+ <div style="width: auto; margin-left: auto; margin-right: auto">
31
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
32
+ </div>
33
+ <div style="display: flex; justify-content: space-between; width: 100%;">
34
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
36
+ </div>
37
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
39
+ </div>
40
+ </div>
41
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
42
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
+ <!-- header end -->
44
+
45
+ # Yi 34B 200K DARE MegaMerge V8 - AWQ
46
+ - Model creator: [brucethemoose](https://huggingface.co/brucethemoose)
47
+ - Original model: [Yi 34B 200K DARE MegaMerge V8](https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-megamerge-v8)
48
+
49
+ <!-- description start -->
50
+ ## Description
51
+
52
+ This repo contains AWQ model files for [brucethemoose's Yi 34B 200K DARE MegaMerge V8](https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-megamerge-v8).
53
+
54
+
55
+ ### About AWQ
56
+
57
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
58
+
59
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
60
+
61
+ It is supported by:
62
+
63
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
64
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
65
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
66
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
67
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
68
+
69
+ <!-- description end -->
70
+ <!-- repositories-available start -->
71
+ ## Repositories available
72
+
73
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yi-34B-200K-DARE-megamerge-v8-AWQ)
74
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yi-34B-200K-DARE-megamerge-v8-GPTQ)
75
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yi-34B-200K-DARE-megamerge-v8-GGUF)
76
+ * [brucethemoose's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-megamerge-v8)
77
+ <!-- repositories-available end -->
78
+
79
+ <!-- prompt-template start -->
80
+ ## Prompt template: Orca-Vicuna
81
+
82
+ ```
83
+ SYSTEM: {system_message}
84
+ USER: {prompt}
85
+ ASSISTANT:
86
+
87
+ ```
88
+
89
+ <!-- prompt-template end -->
90
+
91
+
92
+ <!-- README_AWQ.md-provided-files start -->
93
+ ## Provided files, and AWQ parameters
94
+
95
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
96
+
97
+ Models are released as sharded safetensors files.
98
+
99
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
100
+ | ------ | ---- | -- | ----------- | ------- | ---- |
101
+ | [main](https://huggingface.co/TheBloke/Yi-34B-200K-DARE-megamerge-v8-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 19.23 GB
102
+
103
+ <!-- README_AWQ.md-provided-files end -->
104
+
105
+ <!-- README_AWQ.md-text-generation-webui start -->
106
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
107
+
108
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
109
+
110
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
111
+
112
+ 1. Click the **Model tab**.
113
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Yi-34B-200K-DARE-megamerge-v8-AWQ`.
114
+ 3. Click **Download**.
115
+ 4. The model will start downloading. Once it's finished it will say "Done".
116
+ 5. In the top left, click the refresh icon next to **Model**.
117
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Yi-34B-200K-DARE-megamerge-v8-AWQ`
118
+ 7. Select **Loader: AutoAWQ**.
119
+ 8. Click Load, and the model will load and is now ready for use.
120
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
121
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
122
+ <!-- README_AWQ.md-text-generation-webui end -->
123
+
124
+ <!-- README_AWQ.md-use-from-vllm start -->
125
+ ## Multi-user inference server: vLLM
126
+
127
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
128
+
129
+ - Please ensure you are using vLLM version 0.2 or later.
130
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
131
+
132
+ For example:
133
+
134
+ ```shell
135
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Yi-34B-200K-DARE-megamerge-v8-AWQ --quantization awq --dtype auto
136
+ ```
137
+
138
+ - When using vLLM from Python code, again set `quantization=awq`.
139
+
140
+ For example:
141
+
142
+ ```python
143
+ from vllm import LLM, SamplingParams
144
+
145
+ prompts = [
146
+ "Tell me about AI",
147
+ "Write a story about llamas",
148
+ "What is 291 - 150?",
149
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
150
+ ]
151
+ prompt_template=f'''SYSTEM: {system_message}
152
+ USER: {prompt}
153
+ ASSISTANT:
154
+ '''
155
+
156
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
157
+
158
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
159
+
160
+ llm = LLM(model="TheBloke/Yi-34B-200K-DARE-megamerge-v8-AWQ", quantization="awq", dtype="auto")
161
+
162
+ outputs = llm.generate(prompts, sampling_params)
163
+
164
+ # Print the outputs.
165
+ for output in outputs:
166
+ prompt = output.prompt
167
+ generated_text = output.outputs[0].text
168
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
169
+ ```
170
+ <!-- README_AWQ.md-use-from-vllm start -->
171
+
172
+ <!-- README_AWQ.md-use-from-tgi start -->
173
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
174
+
175
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
176
+
177
+ Example Docker parameters:
178
+
179
+ ```shell
180
+ --model-id TheBloke/Yi-34B-200K-DARE-megamerge-v8-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
181
+ ```
182
+
183
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
184
+
185
+ ```shell
186
+ pip3 install huggingface-hub
187
+ ```
188
+
189
+ ```python
190
+ from huggingface_hub import InferenceClient
191
+
192
+ endpoint_url = "https://your-endpoint-url-here"
193
+
194
+ prompt = "Tell me about AI"
195
+ prompt_template=f'''SYSTEM: {system_message}
196
+ USER: {prompt}
197
+ ASSISTANT:
198
+ '''
199
+
200
+ client = InferenceClient(endpoint_url)
201
+ response = client.text_generation(prompt,
202
+ max_new_tokens=128,
203
+ do_sample=True,
204
+ temperature=0.7,
205
+ top_p=0.95,
206
+ top_k=40,
207
+ repetition_penalty=1.1)
208
+
209
+ print(f"Model output: ", response)
210
+ ```
211
+ <!-- README_AWQ.md-use-from-tgi end -->
212
+
213
+ <!-- README_AWQ.md-use-from-python start -->
214
+ ## Inference from Python code using Transformers
215
+
216
+ ### Install the necessary packages
217
+
218
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
219
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
220
+
221
+ ```shell
222
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
223
+ ```
224
+
225
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
226
+
227
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
228
+
229
+ ```shell
230
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
231
+ ```
232
+
233
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
234
+
235
+ ```shell
236
+ pip3 uninstall -y autoawq
237
+ git clone https://github.com/casper-hansen/AutoAWQ
238
+ cd AutoAWQ
239
+ pip3 install .
240
+ ```
241
+
242
+ ### Transformers example code (requires Transformers 4.35.0 and later)
243
+
244
+ ```python
245
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
246
+
247
+ model_name_or_path = "TheBloke/Yi-34B-200K-DARE-megamerge-v8-AWQ"
248
+
249
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
250
+ model = AutoModelForCausalLM.from_pretrained(
251
+ model_name_or_path,
252
+ low_cpu_mem_usage=True,
253
+ device_map="cuda:0"
254
+ )
255
+
256
+ # Using the text streamer to stream output one token at a time
257
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
258
+
259
+ prompt = "Tell me about AI"
260
+ prompt_template=f'''SYSTEM: {system_message}
261
+ USER: {prompt}
262
+ ASSISTANT:
263
+ '''
264
+
265
+ # Convert prompt to tokens
266
+ tokens = tokenizer(
267
+ prompt_template,
268
+ return_tensors='pt'
269
+ ).input_ids.cuda()
270
+
271
+ generation_params = {
272
+ "do_sample": True,
273
+ "temperature": 0.7,
274
+ "top_p": 0.95,
275
+ "top_k": 40,
276
+ "max_new_tokens": 512,
277
+ "repetition_penalty": 1.1
278
+ }
279
+
280
+ # Generate streamed output, visible one token at a time
281
+ generation_output = model.generate(
282
+ tokens,
283
+ streamer=streamer,
284
+ **generation_params
285
+ )
286
+
287
+ # Generation without a streamer, which will include the prompt in the output
288
+ generation_output = model.generate(
289
+ tokens,
290
+ **generation_params
291
+ )
292
+
293
+ # Get the tokens from the output, decode them, print them
294
+ token_output = generation_output[0]
295
+ text_output = tokenizer.decode(token_output)
296
+ print("model.generate output: ", text_output)
297
+
298
+ # Inference is also possible via Transformers' pipeline
299
+ from transformers import pipeline
300
+
301
+ pipe = pipeline(
302
+ "text-generation",
303
+ model=model,
304
+ tokenizer=tokenizer,
305
+ **generation_params
306
+ )
307
+
308
+ pipe_output = pipe(prompt_template)[0]['generated_text']
309
+ print("pipeline output: ", pipe_output)
310
+
311
+ ```
312
+ <!-- README_AWQ.md-use-from-python end -->
313
+
314
+ <!-- README_AWQ.md-compatibility start -->
315
+ ## Compatibility
316
+
317
+ The files provided are tested to work with:
318
+
319
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
320
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
321
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
322
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
323
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
324
+
325
+ <!-- README_AWQ.md-compatibility end -->
326
+
327
+ <!-- footer start -->
328
+ <!-- 200823 -->
329
+ ## Discord
330
+
331
+ For further support, and discussions on these models and AI in general, join us at:
332
+
333
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
334
+
335
+ ## Thanks, and how to contribute
336
+
337
+ Thanks to the [chirper.ai](https://chirper.ai) team!
338
+
339
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
340
+
341
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
342
+
343
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
344
+
345
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
346
+
347
+ * Patreon: https://patreon.com/TheBlokeAI
348
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
349
+
350
+ **Special thanks to**: Aemon Algiz.
351
+
352
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
353
+
354
+
355
+ Thank you to all my generous patrons and donaters!
356
+
357
+ And thank you again to a16z for their generous grant.
358
+
359
+ <!-- footer end -->
360
+
361
+ # Original model card: brucethemoose's Yi 34B 200K DARE MegaMerge V8
362
+
363
+ # Yi 34B 200K DARE Merge v8
364
+
365
+ A merge of many Yi 34B 200K models using the new DARE Ties method via mergekit. The goal is to create a merge model that excels at 32K+ context performance, without any additional finetuning.
366
+
367
+ ## Prompt template: Orca-Vicuna
368
+ ```
369
+ SYSTEM: {system_message}
370
+ USER: {prompt}
371
+ ASSISTANT:
372
+ ```
373
+ It might recognize ChatML, and possibly Alpaca-like formats. Raw prompting as described here is also effective: https://old.reddit.com/r/LocalLLaMA/comments/18zqy4s/the_secret_to_writing_quality_stories_with_llms/
374
+
375
+
376
+
377
+ ## Running
378
+ Being a Yi model, run a lower temperature with 0.05 or higher MinP, a little repetition penalty, maybe mirostat with a low tau, and no other samplers. Yi tends to run "hot" by default, and it really needs a low temperature + MinP to cull Yi's huge vocabulary. See the explanation here: https://github.com/ggerganov/llama.cpp/pull/3841
379
+
380
+ 24GB GPUs can efficiently run Yi-34B-200K models at **40K-90K context** with exllamav2, and performant UIs like [exui](https://github.com/turboderp/exui). I go into more detail in this [post](https://old.reddit.com/r/LocalLLaMA/comments/1896igc/how_i_run_34b_models_at_75k_context_on_24gb_fast/). 16GB GPUs can still run the high context with aggressive quantization.
381
+
382
+ I recommend exl2 quantizations profiled on data similar to the desired task. It is especially sensitive to the quantization data at low bpw. I've upload my own fiction-oriented quantizations here: https://huggingface.co/collections/brucethemoose/most-recent-merge-65742644ca03b6c514afa204
383
+
384
+ To load/train this in full-context backends like transformers, you *must* change `max_position_embeddings` in config.json to a lower value than 200,000, otherwise you will OOM! I do not recommend running high context without context-efficient backends like exllamav2, litellm or unsloth.
385
+
386
+
387
+ ## Testing Notes
388
+
389
+ See: https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-merge-v5#testing-notes
390
+
391
+ An intermediate merge model was created to try and extend the context of several 4k models before adding them to the main merge, as seen in the "megamerge" recipe below. I can upload this upon request
392
+
393
+ In addition, the weight gradients are biased towards Vicuna-format models in the first few layers to try and "emphasize" the Orca-Vicuna prompt template. How sucessful this is remains to be seen.
394
+
395
+
396
+
397
+ ## Merge Details
398
+ ### Merge Method
399
+
400
+ This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama as a base.
401
+
402
+ ### Models Merged
403
+
404
+ The following models were included in the merge:
405
+ * https://huggingface.co/kyujinpy/PlatYi-34B-200k-Q-FastChat
406
+ * https://huggingface.co/jondurbin/bagel-34b-v0.2
407
+ * https://huggingface.co/migtissera/Tess-M-Creative-v1.0
408
+ * https://huggingface.co/brucethemoose/SUS-Bagel-200K-DARE-Test
409
+ * https://huggingface.co/Mihaiii/Pallas-0.5
410
+ * https://huggingface.co/bhenrym14/airoboros-3_1-yi-34b-200k
411
+ * https://huggingface.co/adamo1139/Yi-34B-200K-AEZAKMI-v2
412
+ * https://huggingface.co/migtissera/Tess-34B-v1.4
413
+ * https://huggingface.co/SUSTech/SUS-Chat-34B
414
+ * https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2
415
+ * https://huggingface.co/bhenrym14/platypus-yi-34b
416
+ * https://huggingface.co/Weyaxi/Nous-Hermes-2-SUS-Chat-34B-Slerp
417
+ * https://huggingface.co/TriadParty/deepsex-34b
418
+ * https://huggingface.co/TriadParty/deepmoney-34b-200k-base
419
+ * https://huggingface.co/chargoddard/Yi-34B-200K-Llama
420
+ * https://huggingface.co/chargoddard/Yi-34B-Llama
421
+
422
+ ### Configuration
423
+
424
+ The following YAML configuration was used to produce this model:
425
+
426
+ ```yaml
427
+ models:
428
+ - model: /home/alpha/Models/Raw/chargoddard_Yi-34B-Llama
429
+ # No parameters necessary for base model
430
+ - model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
431
+ #200K base to extend the context of 4K models, max density as we *want* it to 'interfere'
432
+ parameters:
433
+ weight: 0.33
434
+ density: 1
435
+ - model: /home/alpha/Models/Raw/Weyaxi_Nous-Hermes-2-SUS-Chat-34B-Slerp
436
+ parameters:
437
+ weight: 0.15
438
+ density: 0.36
439
+ - model: /home/alpha/Models/Raw/jondurbin_bagel-dpo-34b-v0.2
440
+ #Mix dpo with sft to tone down dpo
441
+ parameters:
442
+ weight: 0.06
443
+ density: 0.36
444
+ - model: /home/alpha/Models/Raw/jondurbin_bagel-34b-v0.2
445
+ parameters:
446
+ weight: 0.06
447
+ density: 0.41
448
+ - model: /home/alpha/Models/Raw/bhenrym14_platypus-yi-34b
449
+ #Vicuna format
450
+ parameters:
451
+ weight: 0.19
452
+ density: 0.41
453
+ # - model: /home/alpha/Models/Raw/01-ai_Yi-34B-Chat #+/home/alpha/Models/Raw/Doctor-Shotgun_limarpv3-yi-llama-34b-lora
454
+ # #Can't get lora OR base model to work without erroring out?
455
+ # parameters:
456
+ # weight: 0.04
457
+ # density: 0.36
458
+ - model: /home/alpha/Models/Raw/TriadParty_deepsex-34b
459
+ #Base model with no prompt
460
+ parameters:
461
+ weight: 0.21
462
+ density: 0.39
463
+ merge_method: dare_ties
464
+ tokenizer_source: union
465
+ base_model: /home/alpha/Models/Raw/chargoddard_Yi-34B-Llama
466
+ parameters:
467
+ int8_mask: true
468
+ dtype: bfloat16
469
+ name: 4kmerge-v2
470
+ ---
471
+ models:
472
+ - model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
473
+ # No parameters necessary for base model
474
+ - model: /home/alpha/Storage/Models/Raw/migtissera_Tess-34B-v1.4
475
+ #Emphasize the beginning of Vicuna format models
476
+ parameters:
477
+ weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113]
478
+ density: 0.61
479
+ - model: /home/alpha/Models/Raw/Mihaiii_Pallas-0.5
480
+ # Vicuna format
481
+ parameters:
482
+ weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113]
483
+ density: 0.61
484
+ - model: /home/alpha//Storage/Models/Raw/bhenrym14_airoboros-3_1-yi-34b-200k
485
+ parameters:
486
+ weight: [0.02, 0.081, 0.081, 0.081, 0.081, 0.081]
487
+ density: 0.59
488
+ - model: /home/alpha/Storage/Models/Raw/jondurbin_bagel-34b-v0.2
489
+ #Only the SFT in the main merge since the DPO version seems to have no long context ability at all, and some overfitting(?) issues
490
+ parameters:
491
+ weight: [0.02, 0.093, 0.093, 0.093, 0.093, 0.093]
492
+ density: 0.4
493
+ - model: /home/alpha/Storage/Models/Raw/kyujinpy_PlatYi-34B-200k-Q-FastChat
494
+ parameters:
495
+ weight: [0.02, 0.081, 0.081, 0.081, 0.081, 0.081]
496
+ density: 0.59
497
+ #- model: /home/alpha/Storage/Models/Raw/ehartford_dolphin-2.2-yi-34b-200k
498
+ # Dolphin 200K seems to be funky according to multiple leaderboards and perplexity tests?
499
+ # parameters:
500
+ # weight: 0.15
501
+ # density: 0.6
502
+ - model: /home/alpha/Models/Raw/adamo1139_Yi-34B-200K-AEZAKMI-v2
503
+ parameters:
504
+ weight: [0.02, 0.096, 0.096, 0.096, 0.096, 0.096]
505
+ density: 0.59
506
+ - model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B
507
+ parameters:
508
+ weight: [0.21, 0.115, 0.115, 0.115, 0.115, 0.115]
509
+ density: 0.59
510
+ - model: 4kmerge-v2
511
+ #Previous merge
512
+ parameters:
513
+ weight: [0.02, 0.115, 0.115, 0.115, 0.115, 0.115]
514
+ density: 0.4
515
+ - model: /home/alpha/Models/Raw/migtissera_Tess-M-Creative-v1.0
516
+ # Vicuna format
517
+ parameters:
518
+ weight: [0.21, 0.09, 0.09, 0.09, 0.09, 0.09]
519
+ density: 0.61
520
+ - model: /home/alpha/Models/Raw/TriadParty_deepmoney-34b-200k-base
521
+ # No prompt format, native long context full finetune
522
+ parameters:
523
+ weight: [0.04, 0.103, 0.103, 0.103, 0.103, 0.103]
524
+ density: 0.61
525
+ merge_method: dare_ties
526
+ tokenizer_source: union
527
+ base_model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
528
+ parameters:
529
+ int8_mask: true
530
+ dtype: bfloat16
531
+ ```