File size: 25,594 Bytes
6475712 3228f38 6475712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
---
base_model: stabilityai/japanese-stablelm-instruct-beta-70b
datasets:
- kunishou/hh-rlhf-49k-ja
- kunishou/databricks-dolly-15k-ja
- kunishou/oasst1-89k-ja
inference: false
language:
- ja
license:
- llama2
model_creator: Stability AI
model_name: Japanese StableLM Instruct Beta 70B
model_type: llama
pipeline_tag: text-generation
prompt_template: "<s>[INST] <<SYS>>\n\u3042\u306A\u305F\u306F\u5F79\u7ACB\u3064\u30A2\
\u30B7\u30B9\u30BF\u30F3\u30C8\u3067\u3059\u3002\n<<SYS>>\n\n{prompt} [/INST] \n"
quantized_by: TheBloke
tags:
- japanese-stablelm
- causal-lm
---
<!-- markdownlint-disable MD041 -->
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Japanese StableLM Instruct Beta 70B - GGUF
- Model creator: [Stability AI](https://huggingface.co/stabilityai)
- Original model: [Japanese StableLM Instruct Beta 70B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-70b)
<!-- description start -->
## Description
This repo contains GGUF format model files for [Stability AI's Japanese StableLM Instruct Beta 70B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-70b).
These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF)
* [Stability AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-70b)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: Japanese-StableLM-Llama-2-Chat
```
<s>[INST] <<SYS>>
あなたは役立つアシスタントです。
<<SYS>>
{prompt} [/INST]
```
<!-- prompt-template end -->
<!-- licensing start -->
## Licensing
The creator of the source model has listed its license as `['llama2']`, and this quantization has therefore used that same license.
As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Stability AI's Japanese StableLM Instruct Beta 70B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-70b).
<!-- licensing end -->
<!-- compatibility_gguf start -->
## Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [japanese-stablelm-instruct-beta-70b.Q2_K.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
| [japanese-stablelm-instruct-beta-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
| [japanese-stablelm-instruct-beta-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
| [japanese-stablelm-instruct-beta-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
| [japanese-stablelm-instruct-beta-70b.Q4_0.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [japanese-stablelm-instruct-beta-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
| [japanese-stablelm-instruct-beta-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
| [japanese-stablelm-instruct-beta-70b.Q5_0.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [japanese-stablelm-instruct-beta-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
| [japanese-stablelm-instruct-beta-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/japanese-stablelm-instruct-beta-70B-GGUF/blob/main/japanese-stablelm-instruct-beta-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
| japanese-stablelm-instruct-beta-70b.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
| japanese-stablelm-instruct-beta-70b.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
### Q6_K and Q8_0 files are split and require joining
**Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
<details>
<summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
### q6_K
Please download:
* `japanese-stablelm-instruct-beta-70b.Q6_K.gguf-split-a`
* `japanese-stablelm-instruct-beta-70b.Q6_K.gguf-split-b`
### q8_0
Please download:
* `japanese-stablelm-instruct-beta-70b.Q8_0.gguf-split-a`
* `japanese-stablelm-instruct-beta-70b.Q8_0.gguf-split-b`
To join the files, do the following:
Linux and macOS:
```
cat japanese-stablelm-instruct-beta-70b.Q6_K.gguf-split-* > japanese-stablelm-instruct-beta-70b.Q6_K.gguf && rm japanese-stablelm-instruct-beta-70b.Q6_K.gguf-split-*
cat japanese-stablelm-instruct-beta-70b.Q8_0.gguf-split-* > japanese-stablelm-instruct-beta-70b.Q8_0.gguf && rm japanese-stablelm-instruct-beta-70b.Q8_0.gguf-split-*
```
Windows command line:
```
COPY /B japanese-stablelm-instruct-beta-70b.Q6_K.gguf-split-a + japanese-stablelm-instruct-beta-70b.Q6_K.gguf-split-b japanese-stablelm-instruct-beta-70b.Q6_K.gguf
del japanese-stablelm-instruct-beta-70b.Q6_K.gguf-split-a japanese-stablelm-instruct-beta-70b.Q6_K.gguf-split-b
COPY /B japanese-stablelm-instruct-beta-70b.Q8_0.gguf-split-a + japanese-stablelm-instruct-beta-70b.Q8_0.gguf-split-b japanese-stablelm-instruct-beta-70b.Q8_0.gguf
del japanese-stablelm-instruct-beta-70b.Q8_0.gguf-split-a japanese-stablelm-instruct-beta-70b.Q8_0.gguf-split-b
```
</details>
<!-- README_GGUF.md-provided-files end -->
<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: TheBloke/japanese-stablelm-instruct-beta-70B-GGUF and below it, a specific filename to download, such as: japanese-stablelm-instruct-beta-70b.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download TheBloke/japanese-stablelm-instruct-beta-70B-GGUF japanese-stablelm-instruct-beta-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download TheBloke/japanese-stablelm-instruct-beta-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/japanese-stablelm-instruct-beta-70B-GGUF japanese-stablelm-instruct-beta-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 32 -m japanese-stablelm-instruct-beta-70b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] <<SYS>>\nあなたは役立つアシスタントです。\n<<SYS>>\n\n{prompt} [/INST]"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
### How to load this model in Python code, using ctransformers
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install ctransformers
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]
# Or with AMD ROCm GPU acceleration (Linux only)
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems only
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```
#### Simple ctransformers example code
```python
from ctransformers import AutoModelForCausalLM
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/japanese-stablelm-instruct-beta-70B-GGUF", model_file="japanese-stablelm-instruct-beta-70b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
print(llm("AI is going to"))
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
<!-- README_GGUF.md-how-to-run end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
<!-- original-model-card start -->
# Original model card: Stability AI's Japanese StableLM Instruct Beta 70B
# Japanese-StableLM-Instruct-Beta-70B
![A cute robot wearing a kimono writes calligraphy with one single brush](./japanese-stablelm-robot.jpg)
> A cute robot wearing a kimono writes calligraphy with one single brush — [Stable Diffusion XL](https://clipdrop.co/stable-diffusion)
## Model Description
`japanese-stablelm-instruct-beta-70b` is a 70B-parameter decoder-only language model based on [japanese-stablelm-base-beta-70b](https://huggingface.co/stabilityai/japanese-stablelm-base-beta-70b) and further fine tuned on Databricks Dolly-15k, Anthropic HH, and other public data.
This model is also available in a [smaller 7b version](https://huggingface.co/stabilityai/japanese-stablelm-instruct-beta-7b), or a [smaller and faster version with a specialized tokenizer](https://huggingface.co/stabilityai/japanese-stablelm-instruct-ja_vocab-beta-7b).
## Usage
First install additional dependencies in [requirements.txt](./requirements.txt):
```sh
pip install -r requirements.txt
```
Then start generating text with `japanese-stablelm-instruct-beta-70b` by using the following code snippet:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "stabilityai/japanese-stablelm-instruct-beta-70b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# The next line may need to be modified depending on the environment
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
def build_prompt(user_query, inputs):
sys_msg = "<s>[INST] <<SYS>>\nあなたは役立つアシスタントです。\n<<SYS>>\n\n"
p = sys_msg + user_query + "\n\n" + inputs + " [/INST] "
return p
# Infer with prompt without any additional input
user_inputs = {
"user_query": "与えられたことわざの意味を小学生でも分かるように教えてください。",
"inputs": "情けは人のためならず"
}
prompt = build_prompt(**user_inputs)
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
# this is for reproducibility.
# feel free to change to get different result
seed = 23
torch.manual_seed(seed)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=128,
temperature=0.99,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
```
We suggest playing with different generation config (`top_p`, `repetition_penalty` etc) to find the best setup for your tasks. For example, use higher temperature for roleplay task, lower temperature for reasoning.
## Model Details
* **Model type**: `japanese-stablelm-instruct-beta-70b` model is an auto-regressive language model based on the Llama2 transformer architecture.
* **Language(s)**: Japanese
* **License**: [Llama2 Community License](https://ai.meta.com/llama/license/).
* **Contact**: For questions and comments about the model, please join [Stable Community Japan](https://discord.gg/StableJP). For future announcements / information about Stability AI models, research, and events, please follow https://twitter.com/StabilityAI_JP.
## Training Dataset
The following datasets were used for the instruction training. Note these are Japanese translated versions of the original datasets, shared by [kunishou](https://huggingface.co/kunishou).
- [Anthropic HH-RLHF](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja)
- [Databricks Dolly 15-k](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/kunishou/oasst1-89k-ja)
## Use and Limitations
### Intended Use
The model is intended to be used by all individuals as a foundation for application-specific fine-tuning without strict limitations on commercial use.
### Limitations and bias
The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters which can be reflected in the model generated text. We recommend users exercise reasonable caution when using these models in production systems. Do not use the model for any applications that may cause harm or distress to individuals or groups.
## Authors
This model was developed by the Research & Development team at Stability AI Japan, and the development was co-led by [Takuya Akiba](https://huggingface.co/iwiwi) and [Meng Lee](https://huggingface.co/leemeng). The members of the team are as follows:
- [Meng Lee](https://huggingface.co/leemeng)
- [Fujiki Nakamura](https://huggingface.co/fujiki)
- [Makoto Shing](https://huggingface.co/mkshing)
- [Paul McCann](https://huggingface.co/polm-stability)
- [Takuya Akiba](https://huggingface.co/iwiwi)
- [Naoki Orii](https://huggingface.co/mrorii)
## Acknowledgements
We thank Meta Research for releasing Llama 2 under an open license for others to build on.
We are grateful for the contributions of the EleutherAI Polyglot-JA team in helping us to collect a large amount of pre-training data in Japanese. Polyglot-JA members includes Hyunwoong Ko (Project Lead), Fujiki Nakamura (originally started this project when he commited to the Polyglot team), Yunho Mo, Minji Jung, KeunSeok Im, and Su-Kyeong Jang.
We are also appreciative of [AI Novelist/Sta (Bit192, Inc.)](https://ai-novel.com/index.php) and the numerous contributors from [Stable Community Japan](https://discord.gg/VPrcE475HB) for assisting us in gathering a large amount of high-quality Japanese textual data for model training.
<!-- original-model-card end -->
|