TheBloke commited on
Commit
0744cce
·
1 Parent(s): fd74aa3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +485 -0
README.md ADDED
@@ -0,0 +1,485 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: LeoLM/leo-hessianai-7b-chat
3
+ datasets:
4
+ - LeoLM/OpenSchnabeltier
5
+ - OpenAssistant/OASST-DE
6
+ - FreedomIntelligence/alpaca-gpt4-deutsch
7
+ - FreedomIntelligence/evol-instruct-deutsch
8
+ - LeoLM/German_Poems
9
+ - LeoLM/German_Songs
10
+ inference: false
11
+ language:
12
+ - en
13
+ - de
14
+ library_name: transformers
15
+ license: llama2
16
+ model_creator: LAION LeoLM
17
+ model_name: Leo Hessianai 7B Chat
18
+ model_type: llama
19
+ pipeline_tag: text-generation
20
+ prompt_template: '<|im_start|>system
21
+
22
+ {system_message}<|im_end|>
23
+
24
+ <|im_start|>user
25
+
26
+ {prompt}<|im_end|>
27
+
28
+ <|im_start|>assistant
29
+
30
+ '
31
+ quantized_by: TheBloke
32
+ ---
33
+
34
+ <!-- header start -->
35
+ <!-- 200823 -->
36
+ <div style="width: auto; margin-left: auto; margin-right: auto">
37
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
38
+ </div>
39
+ <div style="display: flex; justify-content: space-between; width: 100%;">
40
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
42
+ </div>
43
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
45
+ </div>
46
+ </div>
47
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
48
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
49
+ <!-- header end -->
50
+
51
+ # Leo Hessianai 7B Chat - AWQ
52
+ - Model creator: [LAION LeoLM](https://huggingface.co/LeoLM)
53
+ - Original model: [Leo Hessianai 7B Chat](https://huggingface.co/LeoLM/leo-hessianai-7b-chat)
54
+
55
+ <!-- description start -->
56
+ ## Description
57
+
58
+ This repo contains AWQ model files for [LAION LeoLM's Leo Hessianai 7B Chat](https://huggingface.co/LeoLM/leo-hessianai-7b-chat).
59
+
60
+
61
+ ### About AWQ
62
+
63
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
64
+
65
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of Llama AWQ models for high-throughput concurrent inference in multi-user server scenarios.
66
+
67
+ As of September 25th 2023, preliminary Llama-only AWQ support has also been added to [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference).
68
+
69
+ Note that, at the time of writing, overall throughput is still lower than running vLLM or TGI with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
70
+ <!-- description end -->
71
+ <!-- repositories-available start -->
72
+ ## Repositories available
73
+
74
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/leo-hessianai-7B-chat-AWQ)
75
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/leo-hessianai-7B-chat-GPTQ)
76
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/leo-hessianai-7B-chat-GGUF)
77
+ * [LAION LeoLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/LeoLM/leo-hessianai-7b-chat)
78
+ <!-- repositories-available end -->
79
+
80
+ <!-- prompt-template start -->
81
+ ## Prompt template: ChatML
82
+
83
+ ```
84
+ <|im_start|>system
85
+ {system_message}<|im_end|>
86
+ <|im_start|>user
87
+ {prompt}<|im_end|>
88
+ <|im_start|>assistant
89
+
90
+ ```
91
+
92
+ <!-- prompt-template end -->
93
+
94
+
95
+ <!-- README_AWQ.md-provided-files start -->
96
+ ## Provided files, and AWQ parameters
97
+
98
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
99
+
100
+ Models are released as sharded safetensors files.
101
+
102
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
103
+ | ------ | ---- | -- | ----------- | ------- | ---- |
104
+ | [main](https://huggingface.co/TheBloke/leo-hessianai-7B-chat-AWQ/tree/main) | 4 | 128 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 8192 | 3.89 GB
105
+
106
+ <!-- README_AWQ.md-provided-files end -->
107
+
108
+ <!-- README_AWQ.md-use-from-vllm start -->
109
+ ## Serving this model from vLLM
110
+
111
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
112
+
113
+ Note: at the time of writing, vLLM has not yet done a new release with AWQ support.
114
+
115
+ If you try the vLLM examples below and get an error about `quantization` being unrecognised, or other AWQ-related issues, please install vLLM from Github source.
116
+
117
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
118
+
119
+ ```shell
120
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/leo-hessianai-7B-chat-AWQ --quantization awq --dtype half
121
+ ```
122
+
123
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
124
+
125
+ ```python
126
+ from vllm import LLM, SamplingParams
127
+
128
+ prompts = [
129
+ "Hello, my name is",
130
+ "The president of the United States is",
131
+ "The capital of France is",
132
+ "The future of AI is",
133
+ ]
134
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
135
+
136
+ llm = LLM(model="TheBloke/leo-hessianai-7B-chat-AWQ", quantization="awq", dtype="half")
137
+
138
+ outputs = llm.generate(prompts, sampling_params)
139
+
140
+ # Print the outputs.
141
+ for output in outputs:
142
+ prompt = output.prompt
143
+ generated_text = output.outputs[0].text
144
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
145
+ ```
146
+ <!-- README_AWQ.md-use-from-vllm start -->
147
+
148
+ <!-- README_AWQ.md-use-from-python start -->
149
+ ## Serving this model from TGI
150
+
151
+ TGI merged support for AWQ on September 25th, 2023. At the time of writing you need to use the `:latest` Docker container: `ghcr.io/huggingface/text-generation-inference:latest`
152
+
153
+ Add the parameter `--quantize awq` for AWQ support.
154
+
155
+ Example parameters:
156
+ ```shell
157
+ --model-id TheBloke/leo-hessianai-7B-chat-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
158
+ ```
159
+
160
+ ## How to use this AWQ model from Python code
161
+
162
+ ### Install the necessary packages
163
+
164
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
165
+
166
+ ```shell
167
+ pip3 install autoawq
168
+ ```
169
+
170
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
171
+
172
+ ```shell
173
+ pip3 uninstall -y autoawq
174
+ git clone https://github.com/casper-hansen/AutoAWQ
175
+ cd AutoAWQ
176
+ pip3 install .
177
+ ```
178
+
179
+ ### You can then try the following example code
180
+
181
+ ```python
182
+ from awq import AutoAWQForCausalLM
183
+ from transformers import AutoTokenizer
184
+
185
+ model_name_or_path = "TheBloke/leo-hessianai-7B-chat-AWQ"
186
+
187
+ # Load model
188
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
189
+ trust_remote_code=False, safetensors=True)
190
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
191
+
192
+ prompt = "Tell me about AI"
193
+ prompt_template=f'''<|im_start|>system
194
+ {system_message}<|im_end|>
195
+ <|im_start|>user
196
+ {prompt}<|im_end|>
197
+ <|im_start|>assistant
198
+
199
+ '''
200
+
201
+ print("\n\n*** Generate:")
202
+
203
+ tokens = tokenizer(
204
+ prompt_template,
205
+ return_tensors='pt'
206
+ ).input_ids.cuda()
207
+
208
+ # Generate output
209
+ generation_output = model.generate(
210
+ tokens,
211
+ do_sample=True,
212
+ temperature=0.7,
213
+ top_p=0.95,
214
+ top_k=40,
215
+ max_new_tokens=512
216
+ )
217
+
218
+ print("Output: ", tokenizer.decode(generation_output[0]))
219
+
220
+ """
221
+ # Inference should be possible with transformers pipeline as well in future
222
+ # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
223
+ from transformers import pipeline
224
+
225
+ print("*** Pipeline:")
226
+ pipe = pipeline(
227
+ "text-generation",
228
+ model=model,
229
+ tokenizer=tokenizer,
230
+ max_new_tokens=512,
231
+ do_sample=True,
232
+ temperature=0.7,
233
+ top_p=0.95,
234
+ top_k=40,
235
+ repetition_penalty=1.1
236
+ )
237
+
238
+ print(pipe(prompt_template)[0]['generated_text'])
239
+ """
240
+ ```
241
+ <!-- README_AWQ.md-use-from-python end -->
242
+
243
+ <!-- README_AWQ.md-compatibility start -->
244
+ ## Compatibility
245
+
246
+ The files provided are tested to work with:
247
+
248
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ)
249
+ - [vLLM](https://github.com/vllm-project/vllm)
250
+ - [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
251
+
252
+ TGI merged AWQ support on September 25th, 2023: [TGI PR #1054](https://github.com/huggingface/text-generation-inference/pull/1054). Use the `:latest` Docker container until the next TGI release is made.
253
+
254
+ <!-- README_AWQ.md-compatibility end -->
255
+
256
+ <!-- footer start -->
257
+ <!-- 200823 -->
258
+ ## Discord
259
+
260
+ For further support, and discussions on these models and AI in general, join us at:
261
+
262
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
263
+
264
+ ## Thanks, and how to contribute
265
+
266
+ Thanks to the [chirper.ai](https://chirper.ai) team!
267
+
268
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
269
+
270
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
271
+
272
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
273
+
274
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
275
+
276
+ * Patreon: https://patreon.com/TheBlokeAI
277
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
278
+
279
+ **Special thanks to**: Aemon Algiz.
280
+
281
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
282
+
283
+
284
+ Thank you to all my generous patrons and donaters!
285
+
286
+ And thank you again to a16z for their generous grant.
287
+
288
+ <!-- footer end -->
289
+
290
+ # Original model card: LAION LeoLM's Leo Hessianai 7B Chat
291
+
292
+ # LAION LeoLM: **L**inguistically **E**nhanced **O**pen **L**anguage **M**odel
293
+ Meet LeoLM, the first open and commercially available German Foundation Language Model built on Llama-2.
294
+ Our models extend Llama-2's capabilities into German through continued pretraining on a large corpus of German-language and mostly locality specific text.
295
+ Thanks to a compute grant at HessianAI's new supercomputer **42**, we release two foundation models trained with 8k context length,
296
+ [`LeoLM/leo-hessianai-7b`](https://huggingface.co/LeoLM/leo-hessianai-7b) and [`LeoLM/leo-hessianai-13b`](https://huggingface.co/LeoLM/leo-hessianai-13b) under the [Llama-2 community license](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt) (70b also coming soon! 👀).
297
+ With this release, we hope to bring a new wave of opportunities to German open-source and commercial LLM research and accelerate adoption.
298
+ Read our [blog post]() or our paper (preprint coming soon) for more details!
299
+
300
+ *A project by Björn Plüster and Christoph Schuhmann in collaboration with LAION and HessianAI.*
301
+
302
+ ## LeoLM Chat
303
+ `LeoLM/leo-hessianai-7b-chat` is a German chat model built on our foundation model `LeoLM/leo-hessianai-7b` and finetuned on a selection of German instruction datasets.
304
+ The model performs exceptionally well on writing, explanation and discussion tasks but struggles somewhat with math and advanced reasoning. See our MT-Bench-DE scores:
305
+ ```
306
+ {
307
+ "first_turn": 5.75,
308
+ "second_turn": 4.45,
309
+ "categories": {
310
+ "writing": 5.875,
311
+ "roleplay": 6.3,
312
+ "reasoning": 3.5,
313
+ "math": 2.85,
314
+ "coding": 2.95,
315
+ "extraction": 4.3,
316
+ "stem": 7.4,
317
+ "humanities": 7.625
318
+ },
319
+ "average": 5.1
320
+ }
321
+ ```
322
+
323
+ ## Model Details
324
+
325
+ - **Finetuned from:** [LeoLM/leo-hessianai-7b](https://huggingface.co/LeoLM/leo-hessianai-7b)
326
+ - **Model type:** Causal decoder-only transformer language model
327
+ - **Language:** English and German
328
+ - **Demo:** [Web Demo]()
329
+ - **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
330
+ - **Contact:** [LAION Discord](https://discord.com/invite/eq3cAMZtCC) or [Björn Plüster](mailto:[email protected])
331
+
332
+
333
+ ## Use in 🤗Transformers
334
+ First install direct dependencies:
335
+ ```
336
+ pip install transformers torch sentencepiece
337
+ ```
338
+ If you want faster inference using flash-attention2, you need to install these dependencies:
339
+ ```bash
340
+ pip install packaging ninja
341
+ pip install flash-attn==v2.1.1 --no-build-isolation
342
+ pip install git+https://github.com/HazyResearch/[email protected]#subdirectory=csrc/rotary
343
+ ```
344
+ Then load the model in transformers:
345
+ ```python
346
+ from transformers import pipeline
347
+ import torch
348
+
349
+ system_prompt = """<|im_start|>system
350
+ Dies ist eine Unterhaltung zwischen einem intelligenten, hilfsbereitem KI-Assistenten und einem Nutzer.
351
+ Der Assistent gibt ausführliche, hilfreiche und ehrliche Antworten.<|im_end|>
352
+
353
+ """
354
+ prompt_format = "<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
355
+ prompt = "Erkläre mir wie die Fahrradwegesituation in Hamburg ist."
356
+
357
+ generator = pipeline(model="LeoLM/leo-hessianai-7b-chat", device="cuda", torch_dtype=torch.float16, trust_remote_code=True) # True for flash-attn2 else False
358
+ print(generator(prompt_format.format(prompt=prompt), do_sample=True, top_p=0.95, max_length=8192))
359
+ ```
360
+
361
+ "*Als KI kann ich keine persönlichen Beobachtungen teilen, aber ich kann einige allgemeine Informationen zur Fahrradwegesituation in Hamburg liefern. Im Vergleich zu vielen anderen großen Städten hat Hamburg eine hohe Anzahl von Fahrradfahrern und nimmt seine Verantwortung für nachhaltige Verkehrsmittel sehr ernst. Es gibt viele Fahrradwege und separate Fahrspuren, die Radfahrern ermöglichen, zusammen mit dem Autoverkehr zu fahren. Diese Fahrradspuren sind oft mit Markierungen gekennzeichnet und durch physische Trennungen von anderen Fahrspuren abgegrenzt. Darüber hinaus gibt es viele Fahrradstraßen, auf denen Radfahrer Vorfahrt haben und Autos langsamer fahren müssen.*
362
+
363
+ *In einigen städtischen Gebieten können Fahrradwege jedoch eng oder überfüllt sein, besonders während der Stoßzeiten. Es gibt auch viele Kreuzungen, an denen Radfahrer anhalten und auf Grün warten müssen, ähnlich wie Autofahrer. Insgesamt ist die Fahrradinfrastruktur in Hamburg ziemlich gut, aber wie überall gibt es immer Raum für Verbesserungen.*"
364
+
365
+ ## Prompting / Prompt Template
366
+
367
+ Prompt dialogue template (ChatML format):
368
+
369
+ ```
370
+ """
371
+ <|im_start|>system
372
+ {system_message}<|im_end|>
373
+ <|im_start|>user
374
+ {prompt}<|im_end|>
375
+ <|im_start|>assistant
376
+ """
377
+ ```
378
+
379
+ The model input can contain multiple conversation turns between user and assistant, e.g.
380
+ ```
381
+ <|im_start|>user
382
+ {prompt 1}<|im_end|>
383
+ <|im_start|>assistant
384
+ {reply 1}<|im_end|>
385
+ <|im_start|>user
386
+ {prompt 2}<|im_end|>
387
+ <|im_start|>assistant
388
+ (...)
389
+ ```
390
+
391
+ ## Ethical Considerations and Limitations
392
+
393
+ LeoLM has been tested in English and German, and has not covered, nor could it cover all scenarios.
394
+ For these reasons, as with all LLMs, the potential outputs of `LeoLM/leo-hessianai-7b-chat` cannot be predicted
395
+ in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses
396
+ to user prompts. Therefore, before deploying any applications of `LeoLM/leo-hessianai-7b-chat`, developers should
397
+ perform safety testing and tuning tailored to their specific applications of the model.
398
+
399
+ Please see Meta's [Responsible Use Guide](https://ai.meta.com/llama/responsible-use-guide/).
400
+
401
+ ## Finetuning Details
402
+
403
+ | Hyperparameter | Value |
404
+ |---|---|
405
+ | Num epochs | 3 |
406
+ | Examples per epoch | 131214 |
407
+ | Global batch size | 256 |
408
+ | Learning rate | 3e-5 |
409
+ | Warmup steps | 100 |
410
+ | LR scheduler | Cosine |
411
+ | Adam betas | (0.9, 0.95) |
412
+
413
+
414
+ ## Dataset Details
415
+ ```
416
+ ## Stats for 'Subset of OpenAssistant/OASST-DE' (3534 samples (100.0%))
417
+ -----------------
418
+ Accepted: 3534/3534 (100.0%)
419
+ Accepted tokens: 2259302
420
+ Skipped: 0 (0.0%)
421
+ Min tokens per sample: 29
422
+ Max tokens per sample: 2484
423
+ Avg tokens per sample: 639.3044708545557
424
+ -----------------
425
+
426
+ ## Stats for 'Subset of FreedomIntelligence/evol-instruct-deutsch' (57841 samples (100.0%))
427
+ -----------------
428
+ Accepted: 57841/57841 (100.0%)
429
+ Accepted tokens: 42958192
430
+ Skipped: 0 (0.0%)
431
+ Min tokens per sample: 33
432
+ Max tokens per sample: 5507
433
+ Avg tokens per sample: 742.6944900675991
434
+ -----------------
435
+
436
+ ## Stats for 'Subset of FreedomIntelligence/alpaca-gpt4-deutsch' (48969 samples (100.0%))
437
+ -----------------
438
+ Accepted: 48969/48969 (100.0%)
439
+ Accepted tokens: 13372005
440
+ Skipped: 0 (0.0%)
441
+ Min tokens per sample: 19
442
+ Max tokens per sample: 1359
443
+ Avg tokens per sample: 273.07082031489307
444
+ -----------------
445
+
446
+ ## Stats for 'Subset of LeoLM/OpenSchnabeltier' (21314 samples (100.0%))
447
+ -----------------
448
+ Accepted: 21314/21314 (100.0%)
449
+ Accepted tokens: 8134690
450
+ Skipped: 0 (0.0%)
451
+ Min tokens per sample: 25
452
+ Max tokens per sample: 1202
453
+ Avg tokens per sample: 381.65947264708643
454
+ -----------------
455
+
456
+ ## Stats for 'Subset of LeoLM/German_Poems' (490 samples (100.0%))
457
+ -----------------
458
+ Accepted: 490/490 (100.0%)
459
+ Accepted tokens: 618642
460
+ Skipped: 0 (0.0%)
461
+ Min tokens per sample: 747
462
+ Max tokens per sample: 1678
463
+ Avg tokens per sample: 1262.534693877551
464
+ -----------------
465
+
466
+ ## Stats for 'Subset of LeoLM/German_Songs' (392 samples (100.0%))
467
+ -----------------
468
+ Accepted: 392/392 (100.0%)
469
+ Accepted tokens: 187897
470
+ Skipped: 0 (0.0%)
471
+ Min tokens per sample: 231
472
+ Max tokens per sample: 826
473
+ Avg tokens per sample: 479.3290816326531
474
+ -----------------
475
+
476
+ ## Stats for 'total' (132540 samples (100.0%))
477
+ -----------------
478
+ Accepted: 132540/132540 (100.0%)
479
+ Accepted tokens: 67530728
480
+ Skipped: 0 (0.0%)
481
+ Min tokens per sample: 19
482
+ Max tokens per sample: 5507
483
+ Avg tokens per sample: 509.51205673758864
484
+ -----------------
485
+ ```