TheBloke commited on
Commit
755b288
·
1 Parent(s): bc0d6f3

Upload new k-quant GGML quantised models.

Browse files
Files changed (1) hide show
  1. README.md +108 -39
README.md CHANGED
@@ -1,16 +1,8 @@
1
  ---
2
- language:
3
- - en
4
- tags:
5
- - causal-lm
6
- - llama
7
- license: cc-by-nc-sa-4.0
8
- datasets:
9
- - OpenAssistant/oasst1
10
- - nomic-ai/gpt4all_prompt_generations
11
- - tatsu-lab/alpaca
12
  inference: false
 
13
  ---
 
14
  <!-- header start -->
15
  <div style="width: 100%;">
16
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
@@ -24,57 +16,87 @@ inference: false
24
  </div>
25
  </div>
26
  <!-- header end -->
27
- # StableVicuna-13B-GGML
28
 
29
- This is GGML format quantised 4bit and 5bit models of [CarperAI's StableVicuna 13B](https://huggingface.co/CarperAI/stable-vicuna-13b-delta).
 
 
30
 
31
- It is the result of merging the deltas from the above repository with the original Llama 13B weights, and then quantising to 4bit and 5bit GGML for CPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp).
 
 
 
 
 
32
 
33
  ## Repositories available
34
 
35
- * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GPTQ).
36
- * [4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GGML).
37
- * [Unquantised float16 model in HF format](https://huggingface.co/TheBloke/stable-vicuna-13B-HF).
38
 
39
- ## PROMPT TEMPLATE
 
40
 
41
- This model works best with the following prompt template:
42
 
43
- ```
44
- ### Human: your prompt here
45
- ### Assistant:
46
- ```
 
 
 
47
 
48
- ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
49
 
50
- llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
51
 
52
- I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 12th or later (commit `b9fd7ee` or later) to use them.
 
 
 
 
 
 
53
 
54
- For files compatible with the previous version of llama.cpp, please see branch `previous_llama_ggmlv2`.
 
55
 
56
  ## Provided files
57
- | Name | Quant method | Bits | Size | RAM required | Use case |
58
  | ---- | ---- | ---- | ---- | ---- | ----- |
59
- `stable-vicuna-13B.ggmlv3.q4_0.bin` | q4_0 | 4bit | 8.14GB | 10.5GB | 4bit. |
60
- `stable-vicuna-13B.ggmlv3.q4_1.bin` | q4_1 | 4bit | 8.95GB | 11.0GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
61
- `stable-vicuna-13B.ggmlv3.q5_0.bin` | q5_0 | 5bit | 8.95GB | 11.0GB | 5bit. Higher accuracy, higher resource usage and slower inference. |
62
- `stable-vicuna-13B.ggmlv3.q5_1.bin` | q5_1 | 5bit | 9.76GB | 12.25GB | 5bit. Higher accuracy than q5_0, but again higher resource usage and slower inference. |
63
- `stable-vicuna-13B.ggmlv3.q8_0.bin` | q8_0 | 8bit | 14.6GB | 17GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  ## How to run in `llama.cpp`
66
 
67
  I use the following command line; adjust for your tastes and needs:
68
 
69
  ```
70
- ./main -t 18 -m stable-vicuna-13B.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -r "### Human:" -p "### Human: write a story about llamas ### Assistant:"
71
  ```
 
72
 
73
- Change `-t 18` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
74
 
75
- ## How to run in `text-generation-webui`
76
 
77
- GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual.
78
 
79
  Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
80
 
@@ -98,16 +120,63 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
98
  * Patreon: https://patreon.com/TheBlokeAI
99
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
100
 
101
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
 
 
102
 
103
  Thank you to all my generous patrons and donaters!
 
104
  <!-- footer end -->
105
- # Original StableVicuna-13B model card
 
 
 
 
106
 
107
  ## Model Description
108
 
109
  StableVicuna-13B is a [Vicuna-13B v0](https://huggingface.co/lmsys/vicuna-13b-delta-v0) model fine-tuned using reinforcement learning from human feedback (RLHF) via Proximal Policy Optimization (PPO) on various conversational and instructional datasets.
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  ## Model Details
112
 
113
  * **Trained by**: [Duy Phung](https://github.com/PhungVanDuy) of [CarperAI](https://carper.ai)
@@ -249,7 +318,7 @@ This work would not have been possible without the support of [Stability AI](htt
249
  Zack Witten and
250
  alexandremuzio and
251
  crumb},
252
- title = {{CarperAI/trlx: v0.6.0: LLaMa (Alpaca), Benchmark
253
  Util, T5 ILQL, Tests}},
254
  month = mar,
255
  year = 2023,
 
1
  ---
 
 
 
 
 
 
 
 
 
 
2
  inference: false
3
+ license: other
4
  ---
5
+
6
  <!-- header start -->
7
  <div style="width: 100%;">
8
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
16
  </div>
17
  </div>
18
  <!-- header end -->
 
19
 
20
+ # CarperAI's Stable Vicuna 13B GGML
21
+
22
+ These files are GGML format model files for [CarperAI's Stable Vicuna 13B](https://huggingface.co/CarperAI/stable-vicuna-13b-delta).
23
 
24
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
25
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
26
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp)
27
+ * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
28
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
+ * [ctransformers](https://github.com/marella/ctransformers)
30
 
31
  ## Repositories available
32
 
33
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GPTQ)
34
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GGML)
35
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/stable-vicuna-13B-HF)
36
 
37
+ <!-- compatibility_ggml start -->
38
+ ## Compatibility
39
 
40
+ ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
41
 
42
+ I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
43
+
44
+ They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
45
+
46
+ ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
47
+
48
+ These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
49
 
50
+ They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
51
 
52
+ ## Explanation of the new k-quant methods
53
 
54
+ The new methods available are:
55
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
56
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
57
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
58
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
59
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
60
+ * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
61
 
62
+ Refer to the Provided Files table below to see what files use which methods, and how.
63
+ <!-- compatibility_ggml end -->
64
 
65
  ## Provided files
66
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
67
  | ---- | ---- | ---- | ---- | ---- | ----- |
68
+ | stable-vicuna-13B.ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
69
+ | stable-vicuna-13B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
70
+ | stable-vicuna-13B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
71
+ | stable-vicuna-13B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
72
+ | stable-vicuna-13B.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
73
+ | stable-vicuna-13B.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
74
+ | stable-vicuna-13B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
75
+ | stable-vicuna-13B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
76
+ | stable-vicuna-13B.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
77
+ | stable-vicuna-13B.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
78
+ | stable-vicuna-13B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
79
+ | stable-vicuna-13B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
80
+ | stable-vicuna-13B.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
81
+ | stable-vicuna-13B.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
82
+
83
+
84
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
85
 
86
  ## How to run in `llama.cpp`
87
 
88
  I use the following command line; adjust for your tastes and needs:
89
 
90
  ```
91
+ ./main -t 10 -ngl 32 -m stable-vicuna-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
92
  ```
93
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
94
 
95
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
96
 
97
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
98
 
99
+ ## How to run in `text-generation-webui`
100
 
101
  Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
102
 
 
120
  * Patreon: https://patreon.com/TheBlokeAI
121
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
122
 
123
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
124
+
125
+ **Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
126
 
127
  Thank you to all my generous patrons and donaters!
128
+
129
  <!-- footer end -->
130
+
131
+ # Original model card: CarperAI's Stable Vicuna 13B
132
+
133
+
134
+ # StableVicuna-13B
135
 
136
  ## Model Description
137
 
138
  StableVicuna-13B is a [Vicuna-13B v0](https://huggingface.co/lmsys/vicuna-13b-delta-v0) model fine-tuned using reinforcement learning from human feedback (RLHF) via Proximal Policy Optimization (PPO) on various conversational and instructional datasets.
139
 
140
+ ### Apply Delta Weights
141
+
142
+ StableVicuna-13B cannot be used from the `CarperAI/stable-vicuna-13b-delta` weights alone. To obtain the correct model, one must add back the difference between LLaMA 13B and `CarperAI/stable-vicuna-13b-delta` weights. We provide the [`apply_delta.py`](https://huggingface.co/CarperAI/stable-vicuna-13b-delta/raw/main/apply_delta.py) script to automate the conversion, which you can run as:
143
+
144
+ ```sh
145
+ python3 apply_delta.py --base /path/to/model_weights/llama-13b --target stable-vicuna-13b --delta CarperAI/stable-vicuna-13b-delta
146
+ ```
147
+
148
+
149
+ ## Usage
150
+
151
+ Once the delta weights are applied, get started chatting with the model by using the [`transformers`](https://huggingface.co/docs/transformers) library. Following a suggestion from Vicuna Team with Vicuna v0 you should install transformers with this version:
152
+
153
+ ```sh
154
+ pip install git+https://github.com/huggingface/transformers@c612628045822f909020f7eb6784c79700813eda
155
+ ```
156
+
157
+ ```python
158
+ from transformers import AutoTokenizer, AutoModelForCausalLM
159
+
160
+ tokenizer = AutoTokenizer.from_pretrained("path/to/stable-vicuna-13b-applied")
161
+ model = AutoModelForCausalLM.from_pretrained("path/to/stable-vicuna-13b-applied")
162
+ model.half().cuda()
163
+
164
+ prompt = """\
165
+ ### Human: Write a Python script for text classification using Transformers and PyTorch
166
+ ### Assistant:\
167
+ """
168
+
169
+ inputs = tokenizer(prompt, return_tensors='pt').to('cuda')
170
+ tokens = model.generate(
171
+ **inputs,
172
+ max_new_tokens=256,
173
+ do_sample=True,
174
+ temperature=1.0,
175
+ top_p=1.0,
176
+ )
177
+ print(tokenizer.decode(tokens[0], skip_special_tokens=True))
178
+ ```
179
+
180
  ## Model Details
181
 
182
  * **Trained by**: [Duy Phung](https://github.com/PhungVanDuy) of [CarperAI](https://carper.ai)
 
318
  Zack Witten and
319
  alexandremuzio and
320
  crumb},
321
+ title = {{CarperAI/trlx: v0.6.0: LLaMa (Alpaca), Benchmark
322
  Util, T5 ILQL, Tests}},
323
  month = mar,
324
  year = 2023,