File size: 1,864 Bytes
177e0db
 
 
 
 
71929c3
 
177e0db
 
 
 
71929c3
 
 
 
 
 
 
 
 
 
 
 
177e0db
 
 
 
 
 
 
71929c3
177e0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- yt
metrics:
- wer
model-index:
- name: special2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: yt id
      type: yt
      args: id
    metrics:
    - name: Wer
      type: wer
      value: 41.8877716509893
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# special2

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the yt id dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6621
- Wer: 41.8878

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.8117        | 0.26  | 1000 | 0.8215          | 48.6085 |
| 0.7087        | 0.52  | 2000 | 0.7323          | 52.3062 |
| 0.7057        | 0.77  | 3000 | 0.6922          | 50.0032 |
| 0.5319        | 1.03  | 4000 | 0.6686          | 42.1213 |
| 0.4704        | 1.29  | 5000 | 0.6621          | 41.8878 |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3